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Abstract: 

 
A feature common across sequential sampling models 
is that decisions are formed by accumulating sensory 
information up to an action-triggering bound. Aside from 
this central ingredient, numerous model variants exist 
that invoke distinct algorithmic elements and 
adaptations. A key area of disagreement has been 
whether decisions are achieved by integrating evidence 
'perfectly', without the loss of already obtained 
information, or whether evidence accumulation is 
subject to 'leak' whereby older samples of information 
are discarded or lost as time passes. The present study 
used EEG to investigate a previously identified signal of 
human evidence accumulation (the centro-parietal 
positivity; CPP) for signatures of leak. Twenty-three 
participants completed a continuous random dot motion 
task with the goal of detecting periods of coherent 
upward motion. Within half of these coherent targets, a 
brief 200ms 'gap' of incoherent motion was inserted. 
Preliminary analyses indicate that these evidence gaps 
produced substantial reaction time delays and a 
corresponding deceleration in the build-up of the CPP. 
However, initial analyses do not identify a negative CPP 
slope during the gap which would be diagnostic of leak. 
Our data do not support the role of leak in evidence 
accumulation.  
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Introduction 
 

The accumulation of noisy evidence in favour of a 
certain choice alternative is a key property of the 
decision process according to many perceptual 
decision making models, and has received empirical 
support from neurophysiological investigations in a 
variety of species including humans. According to the 
most influential sequential sampling model (the Drift 
Diffusion Model, Ratcliff, 1978), evidence is integrated 
perfectly across time, such that infinite viewing time of 

the stimulus would result in perfect performance 
accuracy. Mathematical modeling has shown that 
models making the assumption of perfect integration 
can provide excellent fits to data when the strength of 
the sensory evidence does not vary across time. 
Neurophysiological work has also shown that perfect 
integration may be instantiated in the human and rat 
brains (e.g. Brunton, Botvinick, & Brody, 2013). 

However, there are several considerations 
which call this account into question: Firstly, the 
information received from the external world can 
change very quickly, and agents need to be able to 
prioritise this newer information to act accordingly 
within rapidly changing environments. Secondly, in 
temporally uncertain tasks, agents may not know 
precisely when to begin evidence accumulation in 
order to optimise the decision process and may need 
an ongoing evaluation of which evidence should be 
included in the continuous evidence total to prevent 
target stimuli being missed. How might the brain 
account for these aspects? One potential solution is 
the use of a ‘leaky’ accumulation strategy, whereby 
older samples of sensory evidence are discounted in 
favour of more recent ones in the ongoing evidence 
total. Leaky accumulation is a key parameter in the 
Leaky Competing Accumulator Model (LCA; Usher & 
McClelland, 2001) and other similar competing 
accumulator models, which have been shown to be 
neurophysiologically plausible. A more recent 
modeling study by Ossmy and colleagues (2013) 
showed that, specifically in temporally uncertain 
environments, leaky accumulation provides optimal 
model fits. Findings also suggest that decisions are 
primarily influenced by information from a limited and 
more recent time window (e.g. Chittka et al., 2009). It 
is not yet clear how representative these models are of 
actual brain activity, and to date there has been no 
neurophysiological demonstration of leak within the 
evidence accumulation process, making this issue a 
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key unanswered question in the literature (Gold & 
Shadlen, 2007).  

It may be the case that investigations into the 
area of leaky integration have been hampered in the 
past by the standard discrete-trial paradigms often 
used within the field of perceptual decision making, 
during which participants can easily predict when the 
sensory evidence will appear and can alter their 
decision strategies on the basis of this – for example, 
altering when they begin their evidence accumulation 
process. A more realistic everyday experience of 
perceptual decision making involves sensory evidence 
that is unpredictable, and which is relayed within a 
continuous stream of irrelevant sensory noise. For this 
reason, the present study utilises a continuous version 
of the random dot motion task in which participants 
must monitor a path of incoherently moving dots for 
intermittent periods of coherent upward motion. In 
addition we leveraged a recently validated EEG 
signature of decision formation known as the ‘Centro-
parietal positivity’ (CPP; O’ Connell, Dockree, & Kelly, 
2012; O’Connell, Shadlen, Wong-Lin, & Kelly, 2018) in 
order to track any potential leak within evidence 
accumulation. The CPP has been shown to trace the 
integration of sensory evidence across time, displaying 
a build-up rate proportional with evidence strength (O’ 
Connell et al., 2012) and consistently preceding 
effector selective motor preparation signals (e.g. the 
Lateralised Readiness Potential), indicating that it 
indexes an intermediate level between sensory 
evidence representation and motor response 
preparation (Kelly & O’ Connell, 2013). In the present 
study, the presence of leak in this human evidence 
accumulation signal is investigated by inserting brief 
gaps of incoherent motion within coherent motion 
targets and analysing the effect that these gaps have 
on the CPP. If leaky accumulation is not present, the 
CPP should merely exhibit a slowing of evidence 
accumulation directly following the gap, while if leaky 
accumulation is present, a significant downturn effect 
should be present in the CPP.  

Methods 
 

Data from 23 participants was analysed (12 female). 
Participants ranged in age from 18 to 30 years (mean 
age = 23 ± 3.6 years). Participants performed a 
continuous random dot motion target detection task in 
which they were required to monitor a noisy, 
incoherent dot motion stimulus in order to detect 
intermittent upward-motion targets that stepped to 
25% coherence. Gaps of incoherent motion (0% 
coherence) were inserted during half of the incoherent 
targets. The targets lasted for a total of 1880ms, while 
the length of the gap within these coherent targets was 
200ms (lasting from 175 to 375ms post evidence 
onset). This timing was based on the latency of peak 

CPP amplitudes in previous studies. The task 
contained three possible lengths of time between 
targets (2, 4, or 6 seconds). Participants responded 
with a right handed mouse click every time they 
perceived coherent upward motion. Participants 
carried out 5 blocks of 42 trials. Prior to beginning the 
task, participants first practiced 20 trials of the task at 
a coherence level of 50%. Visual stimuli were 
programmed using the PsychToolbox extension of 
MATLAB. The stimulus consisted of 75 randomly 
moving dots, with the diameter of the patch of dots 
equal to 8 degrees of visual angle. Each dot was sized 
at 4 pixels, and during coherent motion the dots 
moved upwards at 90 degrees relative to a positive x-
axis, at a speed of 6 degrees per second. 

 
 

Figure 1: Experimental stimulus featuring a 
coherent motion target with a gap of incoherent motion 

inserted within it for 200ms. 
 
Continuous EEG data were recorded from 128 

scalp electrodes, digitized at 512 Hz. Data analysis 
was carried out using custom scripts in MATLAB that 
drew on EEGLAB routines. Noisy channels were 
interpolated and the data were re-referenced offline to 
the average reference. The data were low-pass filtered 
below 30 Hz. The EEG data were segmented into 
epochs between -250ms pre- and 2 seconds post-
stimulus onset, and were baseline corrected relative to 
the average signal in the interval from -200 to 0ms 
relative to stimulus onset. These data were further 
segmented into a window of -650ms to 300ms relative 
to response execution for response-aligned analyses.  
The data were also converted to Current Source 
Density. The CPP was examined as an index of 
evidence accumulation. In the present study, for each 
participant, ERPs were created by averaging across 
single trials at a single electrode located between 
standard sites Cz and Pz using the 10-20 co-ordinate 
system, identified by visual inspection of the grand 
average topography. CPP build-up was defined as the 
slope of a straight line fitted to the stimulus-locked 
waveform at 450ms to 600ms. 

Results 
 

Behavioural results indicated that reaction times were 
significantly longer in the Gap Condition (M = 594.21, 
± 112.95) compared to the No-Gap Condition (M = 
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495.63 ± 143.21), t (21) = 7.76, p < 0.001). Histograms 
are shown in figure 2.  
 

 
 
Figure 2: Distributions of RT across Gap (red, above) 

versus No-Gap (blue, below) conditions.  
 
The grand average stimulus-locked topography is 
shown in figure 3, with the CPP clearly visible around 
centro-parietal regions. The corresponding stimulus-
locked CPP waveforms are also shown in figure 3 for 
the Gap and No-Gap conditions. The mean slope 
value in the Gap condition was -0.02 (± 0.20), while 
the mean in the No-Gap condition was 0.11 (± 0.16). 
This difference across Gap and No-Gap conditions 
was significant, t (21) = 3.77, p = 0.001. However, 
analysis across multiple time bins revealed that there 
was no time window within which the mean CPP slope 
was significantly negative-going. 
 
 

 
 

Figure 3: Grand average stimulus locked waveform 
across Gap and No-Gap conditions (left); Grand 
average stimulus locked topography in the time 

window 450 to 600ms (right). 
  

Discussion 
 

The present study aimed to use EEG data to directly 
track evidence accumulation in order to investigate 
whether human participants implement leaky evidence 
accumulation. It was found that, on trials containing a 
gap of noise within the coherent target, reaction times 
were significantly longer, however, previously 
accumulated evidence was not lost at a significant rate 
from the cumulative total, as would be demonstrated 
by a significantly negative-going CPP slope within the 
time period following the gap. This pattern of results 
provides preliminary neurophysiological evidence 
against the presence leak in a human evidence 
accumulation signal. Future directions include fitting a 
leaky accumulation model to the data and comparing 
this against a standard Drift Diffusion Model containing 
no leak parameter.   
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