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Abstract

Neural population responses to sensory stimuli can
exhibit both nonlinear stimulus-dependence and richly
structured shared variability. Here, we show how adver-
sarial training can be used to optimize neural encoding
models to capture both the deterministic and stochastic
components of neural population data. To account for
the discrete nature of neural spike trains, we use the RE-
BAR method to estimate unbiased gradients for adversar-
ial optimization of neural encoding models. We illustrate
our approach on population recordings from primary vi-
sual cortex. We show that adding latent noise-sources
to a convolutional neural network yields a model which
captures both the stimulus-dependence and noise corre-
lations of the population activity.
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Introduction

Modern recording methods make it possible to record neural
activity from many neurons, revealing both nonlinear stimulus-
dependence and richly structured neural variability. An impor-
tant challenge for neural encoding models is to generate spike
trains that match the statistics of experimentally measured
neural population spike trains. Such synthetic spike trains
could be used to explore limitations of a model, or as realistic
inputs for simulation or stimulation experiments. Most encod-
ing models focus on approximating the ‘signal’ (i.e. the map-
ping of stimuli to average neural responses), neglecting the
statistical structure of neural variability. Probabilistic encod-
ing models (Pillow et al., 2008), and in particular latent vari-
able models (e.g. Archer, Koster, Pillow, and Macke (2014))
can, in principle, also capture shared variability. They are typi-
cally fit with likelihood-based approaches (e.g. maximum like-
lihood estimation MLE, or variational methods for latent vari-
able models). While this approach is very flexible and pow-
erful, it has mostly been applied to simple models of variabil-
ity (e.g. Gaussian inputs). Furthermore, MLE-based models
are not guaranteed to yield synthetic data that is statistically
matched to the empirical data, a problem that can be exac-
erbated by the approximations necessary for training in the
presence of latent variables.

Generative adversarial networks (GANs) (Goodfellow et al.,
2014) provide an alternative approach to fitting the parameters
of probabilistic models. In adversarial training, the objective is
to find parameters which match the statistics of the empirical
data, using a pair of competing neural networks — a gener-
ator and a discriminator. The generator network maps the
distribution of some input random variable onto the empirical
data distribution to try and fool the discriminator network. The
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discriminator network attempts to classify input data as sam-
ples from the true data distribution or from the generator. This
approach has been used extensively and successfully to pro-
duce realistic images (Brock, Donahue, & Simonyan, 2018)
and for text generation (Yu, Zhang, Wang, & Yu, 2016).
Recently, Molano-Mazon, Onken, Piasini, and Panzeri
(2018) trained a generative model of spike trains, and Arakaki,
Barello, and Ahmadian (2019), rate models of neural popula-
tions, using GANs. However, to the best of our knowledge,
adversarial training has not yet been used to train neural en-
coding models of population spike trains, i.e. models which
produce discrete outputs and aim to capture both the depen-
dence of firing rates on external inputs and shared variability.

stimulus

population spike train

/

latent variable

Our goal: Neural encoding models that capture both stimu-
lus and response variability in neural population activity, and
which yield synthetic data matching the statistics of experi-
mentally observed data.

We propose to use conditional GANs (Mirza & Osindero,
2014) for training neural encoding models, as an alternative to
likelihood-based approaches. A key difficulty in using GANs
for neural population data is the discrete nature of neural spike
trains: Adversarial training requires calculation of gradients
through the generative model, which is not possible for mod-
els with a discrete sampling step, and hence, requires the ap-
plication of gradient estimators. While most studies of discrete
GANSs use biased gradient estimators based on the concrete
relaxation (Maddison, Mnih, & Teh, 2016), we use REBAR
(Tucker, Mnih, Maddison, Lawson, & Sohl-Dickstein, 2017) to
obtain unbiased gradients for adversarial training of neural en-
coding models. We demonstrate our approach by fitting a con-
volutional neural network model with shared noise sources to
multi-electrode recordings from V1 (Smith & Kohn, 2008).

Methods

Generative Adversarial Networks We want to train a GAN,
conditioned on the visual input, to generate multivariate binary
spike counts y which match the statistics of empirical data. We
model binary spike trains (i.e. each bin ¢, neuron n and trial i
corresponds to an independent draw from a Bernoulli distribu-
tion) conditioned on the stimulus x and latent variable z which
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induces shared variability. We use a convolutional neural net-
work (CNN) f with parameters 0 to capture the mapping from
x and z to the firing rate A (Fig. 1), with a sigmoid nonlinearity
o in the last layer,

A=0(f(z,x,8))
y|A ~ Bernoulli(A).
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Figure 1: Generator with added noise z;; and zz»

The discriminator D is a neural network parametrized by ¢
(Fig. 2) which receives both the stimulus and the correspond-
ing (simulated or experimental) spike trains. The discriminator
uses a CNN (similar in architecture to the generator) to em-
bed the stimulus, and combines it with the spike train via fully
connected layers. For each timebin and trial, D outputs the
probability of the input spike train being real (rather than sim-
ulated).
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Figure 2: Discriminator

GAN Training The objective is to find the Nash equilibrium
of a minimax game between the generator G and the discrim-
inator D,

mgin mng(Q), G) =E,_ () [log D(y|x)]+

B gz log(1 = D(G(2)|x))-

Due to this objective, GANs are notoriously challenging to
train, as the training algorithm is sensitive to the gradients with
respect to the discriminator parameters (Arjovsky & Bottou,
2017). We used the cross-entropy objective as in equation 3,
but constrained the discriminator gradients using spectral nor-
malisation (Miyato, Kataoka, Koyama, & Yoshida, 2018), and
employed gradient norm clipping for the generator gradients.
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Dealing with discrete data Obtaining the gradients for the
generator requires backpropagation through both generator
and discriminator networks. Most applications of GANs have
been on continuous data. However, spikes are discrete and
thus, the generator has a discrete sampling step which blocks
backpropagation. To overcome this problem, we use RE-
BAR (Tucker et al., 2017) to estimate gradients. Compared
to gradient estimators previously used to train discrete GANs
(Molano-Mazon et al., 2018; Kusner & Hernandez-Lobato,
2016), REBAR provides unbiased gradients, and we found
that it led to better performance in practice.

The REBAR gradient estimator combines concrete relax-
ation (Maddison et al., 2016) and the REINFORCE gradi-
ent estimator (Williams, 1992). Concrete relaxation approxi-
mates the binary variables as continuous values yrelax Which
are close to 0 and 1. This allows backpropagation through
the sampling step, but leads to biased gradients. The REIN-
FORCE gradient estimator, on the other hand, provides unbi-
ased but high-variance gradients using the log-derivative trick,
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REBAR calculates the REINFORCE gradient and uses the
relaxed outputs yrelax @s a control variate (Fig. 3),
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Hence, the REBAR gradient is unbiased, has a lower vari-
ance compared to REINFORCE, and allows us to estimate
gradients despite the discrete sampling step (Fig. 3).
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Figure 3: REBAR gradient estimator

Architecture and dataset We fit our models to a dataset
from Kohn and Smith (2016), consisting of 69 cells recorded
from macaque primary visual cortex, while animals watched a
30s movie repeated 120 times. The movie consisted of 750
frames of size 320 x 320 pixels, which we downsampled to 27
x 27 pixels. We binned the spikes at a 40ms resolution, and
binarized the resulting spike trains.

For the generator, which received 10 consecutive movie
frames of size 27 x 27 pixels as input, we used a 3-layer CNN
architecture similar to that of Kindel, Christensen, and Zylber-
berg (2017) (Fig. 1, layers 1+2: convolutional with 16 and 32
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Figure 4: (A) Spike train rasters for the experimental data, GAN generator and supervised model. (B) Firing rates (per bin,
left) and total pairwise correlation (middle) of the model trained with supervised learning (blue) and the GAN generator (orange)
versus experimental data. Right: population spike count histogram for experimental data (black), supervised model (blue) and
the GAN generator (orange). (C) Pairwise noise correlation matrix for data and models.

filters, size 7 by 7, each followed by a MaxPool layer with ker-
nel size 3 and stride 2, followed by LeakyRELUs with slope
0.2.) The final layer of the CNN was a fully connected layer
with units equal to the number of neurons in the dataset. To
capture the stimulus-independent variability shared between
the neurons, we added Gaussian white noise to the units of
the convolutional layers. The noise was shared between the
units of these layers, multiplied by a separate weight for each
unit. The discriminator network consisted of a CNN embed-
ding for the stimulus, similar in structure to the generator, but
without the added shared noise (see Fig. 2), and 5 subsequent
fully connected RelLU layers.

Training We trained the two networks in parallel for 15k
epochs, each consisting of 2 discriminator updates and 1 gen-
erator update. With batch size 50, we used ADAM with learn-
ing rate 0.0001, B; = 0.9 and B, = 0.999 to optimise the net-
work parameters. The first 650 timebins were used for train-
ing the networks and the last 100 timebins for validation. All
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hyper-parameters were set by hand.

Results

We fit a 3-layer CNN generative model of binary spike counts
to neural population data recorded in the V1 area of macaque
visual cortex (Kohn & Smith, 2016). Cells in V1 typically have
a nonlinear stimulus selectivity, as well as richly structured
shared variability(Cohen & Kohn, 2011; Smith & Kohn, 2008).
We fit the networks using adversarial training, as described
above. For comparison, we also fit a CNN with a similar archi-
tecture to the GAN generator — but without the shared noise
layers — to the same dataset, using supervised learning, i.e.
by optimizing the cross-entropy between predicted firing prob-
abilities and experimentally observed spike trains.

On the training data, both approaches were able to repro-
duce the gross structure in the spike train rasters (Fig. 4A) and
accurately capture the firing rates (here: spike-probabilities
per bin, Fig. 4B left). However, the supervised model did not
accurately reproduce total pairwise correlations between the



neurons, as it has no model of correlated variability (Fig. 4B
center). In addition, the histogram of population spike counts
for data generated from the supervised model is substantially
different from that of the real data (Fig. 4B right). The GAN
generator, on the other hand, was able to capture the to-
tal correlation between most pairs of neurons in the dataset,
with the addition of just a few shared noise parameters. The
GAN-model was also able to accurately capture the matrix of
pairwise noise-correlations (Fig. 4C). In contrast, as the su-
pervised model has no model of shared variability, its noise-
correlations are constrained to be 0.

Discussion

We here showed how adversarial training of simple conditional
generative models that produce discrete outputs (i.e. neural
spike trains) can be used to generate data that matches the
distribution of spike trains recorded in-vivo, and in particular,
its firing rates and correlations. We used the REBAR gradient
estimator to train conditional GANs on discrete spike trains
and used spectral normalisation to stabilise training. We found
this approach to be more effective than previous approaches
to training discrete GANs. However, training of discrete GANs
remains sensitive to the architecture of the discriminator, as
well as hyper-parameter settings.

Adversarial training could also be used to capture higher-
order structure in neural data, and could be combined with dis-
criminators that target certain statistics of the data that might
be of particular interest, in a spirit similar to maximum entropy
models (Schneidman, Berry, Segev, & Bialek, 2006). Simi-
larly, this approach could also be extended to capture tempo-
ral features in neural population data (Macke et al., 2011) such
as spike-history dependence or adaptation effects. Since we
condition the discriminator on the input stimulus, adversarial
training could be used for transfer learning across multiple
datasets. Generative models trained this way, that can pro-
duce realistic spike trains to various input stimuli, may be used
to probe the range of spiking behaviour in a neural population
under different kinds of stimulus or noise perturbations.
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