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Abstract
Recent studies have found attention can be drawn and
sustained toward particular types of sequential regular-
ities in adults and young infants. We propose these
results are naturally accommodated by an attention
bias towards parts of environments with more ”learning
progress” (i.e., improvement in understanding and reduc-
tion of uncertainty about a regularity). Our theory pro-
vides an a-priori theoretical account of a variety of be-
havioral findings. Overall, this is the first step of a project
evaluating the concept of ”learning progress” to explain
spontaneous attention allocation.
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Previous findings: Attention bias in sequence
Recent studies indicate that a spontaneous learning process
happening in both adults and young infants during the expo-
sure to a sequence of stimuli, even in the absence of any task
or goal. In Zhao et al (2013), adults show enhanced atten-
tion to locations presenting a structured sequence (items or-
ganized into triplets in contrast to random sequences). Fur-
thermore, infants have been shown to attend less to items
either too surprising or too unsurprising (Kidd, Piantadosi, &
Aslin, 2012), quantified by the predicted log probability (or in-
formation content, IC) of the item under a probabilistic learn-
ing model. Intermediate probability stimuli are proposed to
be more ”learning worthy” resulting in a ”u-shaped” relation-
ship between attention and element probabilities (Figure2A).
While quite distinct, these studies indicate that the participants
spontaneously learn and attempt to predict the structure while
exposed to a sequence. Our goal here is to advance a novel
theoretical account of these phenomena drawing from recent
research on intrinsic motivation in AI and robotics.

Learning progress as an internal reward
It is well established that learning follows predictable patterns
over time, reflected in the idealized learning curve such as ex-
ponential (Dubey & Griffiths, 2017) or the more general Gom-
pertz growth curve (Pelz, Piantadosi, & Kidd, 2015). One
natural definition of learning progress is then defined as the
derivative of the learning curve( Figure 1A).

Such idealized curves, however, bear only a weak con-
nection to the sequence learning experimental paradigms re-
viewed earlier. Thus it is useful to more directly specify the
learning objective based on the specific learning models for

Figure 1: A. Learning progress with three parameter settings.
B. Learning progress defined by Eq 1 in sequence learning.
The ”structured” (9 items organized into triplets) and ”random”
(9 items uniformly presented) sequence mimics the stimuli in
Zhao et al.(2013). A ”simple” sequence containing only 3
items is added to demonstrate different levels of difficulties.

sequence, such as counting the transition probability P as is
done in Kidd et al.(2012). We use the Shannon entropy H
to capture this intuition and define learning progress as the
instantaneous entropy reduction:

LP(t) = H(P(t))−H(P(t−1)) (1)

Figure 1B illustrates the example learning progress curves
applied to actual sequential materials. They do resemble
the shape derived from Golmpertz curve despite some dif-
ferences. For example, for the total random sequence, the
learning progress does not start strictly from zero due to some
initial learning before the randomness is fully experienced.

Agreement with previous accounts

The learning progress curves in Figure 1B readily explains
the attention bias towards regularity (Zhao et al., 2013): the
learning progress for the structured sequence is almost al-
ways higher than the random sequence thus deserves more
attention.

Regarding relation between learning progress and informa-
tion content (IC), we found a U-shape curve relating LP and
IC in simulated sequences, suggesting an a-priori account of
the u-shaped ”Goldlilocks” effect (Figure 2B).
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Figure 2: A. Empirical U-shape curve between probability of
terminating fixation and information content. Reproduced us-
ing the data from (Piantadosi et al., 2014). Black ”+”s marks
the frequency of stimuli in that specific IC B. Negative learning
progress also shows a U-shape relation with information con-
tent. Each dot is one stimuli presented and blue line is binned
average.

Predicting attention dynamics in changing
environment

More subtle attention biases have been observed in the vari-
ations of the Zhao et al. paradigm. For example, at the sec-
ond half of the experiment if a structured sequence loses its
transition regularity into random or vice versa, even though
now both location presents same types of sequence, atten-
tion is still oriented towards the previously biased location(Yu
& Zhao, 2015). Only when both sequences change to the op-
posite type will the attention difference become non significant
(p>.05).

To explain quantitative attention difference, we formulate
the attention allocation mechanism as maximizing the inter-
nal reward: expected learning progress. This idea has been
implemented in AI and robotics literature but usually with-
out a probabilistic world model(Oudeyer, Kaplan, & Hafner,
2007; Luciw, Graziano, Ring, & Schmidhuber, 2011; Pathak,
Agrawal, Efros, & Darrell, 2017). There are different ways the
learner might integrate historical LP to make the inference
about future. Specifically we assume a delta update rule to
calculate the expected learning progress:

E[LPt+1]← E[LPt ]+α · (LPt −E[LPt ]) (2)

where α is a learning rate.
To decide which sequence to be engaged next, we feed the

expected reward E[LPt+1] into an softmax function to balance
exploration and exploitation.

Our simulation is then able to replicate both the origi-
nal regularity bias (the first column in Figure3), the ”linger-
ing effect” (the second and third column), and its elimination
(the fourth column) where the effects become less significant
(p>0.05). We arbitrarily set reaction time for attended ver-
sus non-attended stimuli to be drawn from N (1.3,0.6) and
N (1.55,0.6) respectively to convert attention into time differ-
ence. More carefully model RT variances between and within

individuals is to be done.1

Figure 3: Replicating (Yu & Zhao, 2015) experiment 1-4 where
the sequence type changes in the second half of the experi-
ment. The RT advantage for structured sequence remains
to be significant unless both sequences change (the fourth
column where p > 0.05). The four columns indicate the four
conditions of the second half, the first with no change, sec-
ond and third with only one location changed, the fourth with
both location changes. On x-axis labels the specific ”s” means
structured and ”r” means random. ”+” marks p < 0.1,”*” makrs
p < 0.05,”**” makrs p < 0.01.

Discussion
We have shown that a number of previous phenomena where
attention seemed automatically captured by particular types
of sequential regularity might best be explained as “learning
progress.” While this is the first stages of this exploration, the
link between research in AI and robotics and human psychol-
ogy is intriguing. A number of important future questions re-
main including the nature and capacity of the learnign models
people apply, and how people will respond to other aspects of
the task such as novelty (e.g., Yu et al.(2015)).
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