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Abstract
We investigate whether a recurrent network trained on
raw text can learn an important syntactic constraint on
coreference. A Long Short-Term Memory (LSTM) network
that is sensitive to some other syntactic constraints was
tested on psycholinguistic materials from two published
experiments on coreference. Whereas the participants
were sensitive to the Principle C constraint on corefer-
ence the LSTM network was not. Our results suggest that,
whether as cognitive models of linguistic processes or as
engineering solutions in practical applications, recurrent
networks may need to be augmented with additional in-
ductive biases to be able to learn models and representa-
tions that fully capture the structures of language under-
lying comprehension.
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Introduction
A recurring theme in connectionist research has been of ex-
plaining behaviours which have been claimed to require some
innate specifications in terms of learning processes that adapt
to the statistical structure of the environment. For exam-
ple, stage like transitions in development may be explainable
in terms of the dynamics of learning in multi-layer networks
(Rogers & McClelland, 2004; Saxe, Mcclelland, & Ganguli,
2014).

Language has been a key battleground in these debates,
with strong forms of innatism (Chomsky, 1981) and poverty-
of-the-stimulus arguments (Pinker, 1979) clashing with ap-
proaches that employ simple general purpose learning mech-
anisms, such as recurrent nets (Elman, 1991). Recently,
these nets, and LSTMs in particular, have become the stan-
dard tools for building NLP systems and training such archi-
tectures on large quantities of raw text has proven to be sur-
prisingly effective way of building representations of natural
language data sources (Peters et al., 2018). In addition, in-
terest in the neuroscientific plausibility of these architectures
has begun to develop (Costa, Assael, Shillingford, de Freitas,
& Vogels, 2017).

The question of their validity as models of linguistic pro-
cessing has therefore become relevant. Recently, Linzen,
Dupoux, and Goldberg (2016) investigated the ability of an
LSTM to predict number agreement between subjects and
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Figure 1: The c-command relation.

verbs - e.g. the man eats but the men eat - correctly and
found only limited success without explicit supervision. In
contrast, Gulordava, Bojanowski, Grave, Linzen, and Baroni
(2018) were able to achieve much better performance on the
same task, by improving the training procedure.

Performance at a level comparable to humans on these
tasks makes it plausible that an LSTM is capable of identify-
ing the same syntactic dependencies within text that language
users exploit in comprehension. However, number agreement
is only one of many elements in the complex processes that
build sophisticated representations of meaning from raw se-
quences of words. In particular, understanding the semantics
of who did what to whom requires an identification of which
entities are being talked about, in which coreference plays a
key role.

Here, we explore the extent to which LSTMs are sensi-
tive to these coreference relations using the materials from
the psycholinguistic experiments of Kazanina, Lau, Lieber-
man, Yoshida, and Phillips (2007). In particular, we investigate
whether the LSTM trained by Gulordava et al. (2018) is sen-
sitive to Principle C (Chomsky, 1981), a syntactic constraint
governing whether a pronoun and noun phrase may corefer.
For example, he and John cannot corefer in He waited while
John ate, but can in While he waited, John ate.

In experiments 1 & 2, we find that the behaviour of the
LSTM is not comparable to the human subjects, and that the
LSTM appears to ignore Principle C in anticipating upcoming
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Table 1: Sample Items From Experiments 1 & 2.

Condition Experiment 1 Experiment 2
Principle C/match Because last semester shei was taking classes

full-time while Kathryn was working two jobs to
pay the bills, Ericai felt guilty

It seemed worrisome to himi that John was
gaining so much weight, but Matti didnt have
the nerve to comment on it

Principle C/mismatch Because last semester shei was taking classes
full-time while Russell was working two jobs to
pay the bills, Ericai felt guilty

It seemed worrisome to himi that Ruth was
gaining so much weight, but Matti didnt have
the nerve to comment on it

No constraint/match Because last semester while shei was taking
classes full-time Kathryni was working two jobs
to pay the bills, Russell never got to see her

It seemed worrisome to hisi family that
Johni was gaining so much weight, but Ruth
thought it was just a result of aging

No constraint/mismatch Because last semester while shei was taking
classes full-time Russell was working two jobs
to pay the bills, Ericai promised to work part-time
in the future

It seemed worrisome to hisi family that
Ruth was gaining so much weight, but Matti
thought it was just a result of aging

material in the sentence. Experiments 3 & 4 then repeat this
analysis on a model trained on data which has been modified
to exhibit a stronger signal in respect to Principle C, but the
model is still nonetheless insensitive.

In the next two sections, we cover the necessary back-
ground relating to coreference and LSTMs.

Coreference and Principle C
Kazanina et al. (2007) investigated the processing of long
distance backwards pronominal coreference. They demon-
strated that encountering a pronoun leads to an active attempt
to identify what the pronoun refers to as soon as possible. If
a coreferent was absent from preceding material, then this
engendered an expectation that it would arise as soon as
possible in future material. This expectation then leads to a
so-called gender-mismatch effect, i.e., longer reading times
when the main clause subject mismatches in gender with the
pronoun (While she was taking classes full time, Russell was
working two jobs to pay the bills.) as compared to when they
match (While she was taking classes full time, Kathryn was
working two jobs to pay the bills.)

Kazanina et al. (2007) used this effect to show that candi-
dates in illicit structural positions that are subject to Principle
C are ruled out of consideration for coreference immediately
during incremental processing. Thus, no effect of gender mis-
match on reading times would be seen for She was taking
classes full time while Kathryn/Russell was working two jobs
to pay the bills, where the second subject (Kathryn/Russell) is
ruled out as a candidate coreferent by Principle C.

The particular constraint at work in this example is known
as Principle C, and specifies that a pronoun cannot c-
command its coreferent. Node N1 c-commands node N2 in a
syntax tree whenever every node that dominates N1 also dom-
inates N2. For example, in Figure 1a the top level S-node is
the only node that dominates he, and since it also dominates
John, the pronoun c-commands the name in this example. In
contrast, several nodes in Figure 1b dominate he that do not

also dominate John, e.g. SBAR, and so coreference is possi-
ble, as the c-command relationship does not hold. This con-
straint, then, relates to reasonably subtle properties of a sen-
tence’s constituency structure, rather than surface features of
the word tokens or the linearly intervening material. Addition-
ally, the distance between the pronoun and the noun that are
subject to Principle C may in principle be arbitrarily long and
they may belong to different clauses. Thus, we might expect
this constraint to be more difficult for an LSTM to recognise
than the simpler number agreement effects investigated by
Gulordava et al. (2018).

Kazanina et al. (2007) ran three experiments on the impact
of Principle C on self paced reading times using slightly dif-
ferent constructions in each experiment. We focus here on
the first two experiments which considered coreference be-
tween pronouns and names, and samples of the materials we
analysed are given in Table 1. The intended coreferential de-
pendencies are indicated by subscript indices, and the bold
names are the sites where we look for the effect of gender
mismatch.

Our interest here is whether an LSTM can learn Principle C
from raw text input. This question concerns both the abilities
of the LSTM and also the presence in the data of a learnable
signal. The c-command structure may be more difficult for the
LSTM to identify than the dependency between a verb and its
subject, but the statistical trace of Principle C in the training
data may also be less clear. Whereas number agreement is
compulsory for a verb and its subject, leading to a strong sta-
tistical signal in the data, Principle C is a constraint on coref-
erence and only specifies when a pronoun and name must
not corefer; in the cases where it does not apply coreference
is possible but not required. In this case, we can expect the
statistical signal to be weaker due to the presence of cases
which could corefer but do not.
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Long Short Term Memory Networks
The Long Short Term Memory (LSTM) architecture was pro-
posed by Hochreiter and Schmidhuber (1997) as a model for
sequential data to address the problem of vanishing gradients
in simple recurrent nets, which had made learning long term
dependencies difficult. The main innovation was to use mem-
ory cells which maintained a constant memory trace across
time and a set of gates to control what flowed into and out of
these cells. This approach and its variants (Gers, Schmidhu-
ber, & Cummins, 2000; Cho et al., 2014) is now widely ap-
plied to sequential data, and has been used extensively in
NLP. Training an LSTM on large quantities of raw text in a lan-
guage model setting, where the objective is simply to predict
a word from its context, has been shown to induce represen-
tations that capture much of the relevant linguistic structure,
and provide a strong input to downstream supervised tasks
(Peters et al., 2018). In terms of modelling human language
processing, Goodkind and Bicknell (2018) found that the log
probabilities from such a model were effective predictors of
human reading times.

Gulordava et al. (2018) trained their LSTM language model
on around 3M sentences of English, and demonstrated it was
able to predict number agreement between subjects and their
verbs. They showed that this grammatical ability persisted
even when the sentences were semantically implausible, and
that performance of the model on increasingly difficult exam-
ples closely mirrored human accuracy. The following exper-
iments investigate whether this human-like performance can
also be found in its handling of coreference relations.

Experiments 1 & 2
In this section, we attempt to reproduce Experiments 1 &
2 of Kazanina et al. (2007) using the pre-trained LSTM of
Gulordava et al. (2018). We look for the influence on the log
probabilities of a gender mismatch between a pronoun and a
subsequent name, and attempt to determine whether this re-
sponse differs between cases where coreference is licit or il-
licit. In the human experiments, only the cases where corefer-
ence was not ruled out by Principle C - i.e. where the pronoun
did not c-command the name - resulted in increased reading
times associated with a gender mismatch. In the cases where
the pronoun did c-command the name - i.e. where corefer-
ence is illict under Principle C - reading times were unaffected
by a gender mismatch between the pronoun and name.

The signature, then, of a model that is sensitive to the Prin-
ciple C constraint on coreference will be that it adjusts the
likelihood of a dependency between pronoun and name gen-
der depending on whether the former c-commands the latter.
In particular, we should expect that agreement in gender is
more likely when coreference is possible, i.e. when the pro-
noun does not c-command the name. In other words, like the
human subjects, we expect the model to be more surprised by
a mismatch in gender, when it encounters a name that is oth-
erwise a syntactically licit candidate for coreference. Statisti-
cally, we analyse this effect in terms of an interaction between

gender mismatch and the c-command relation, producing a
shift in the logs of the probabilities given to male and female
names by the LSTM.

Starting from a list of common names drawn from the reg-
ister of births in England and Wales (Bush, Powell-Smith, &
Freeman, 2018), we found the most frequent 100 male and
100 female names in the training data used by Gulordava et
al. (2018). We then ran their LSTM on the materials from Ex-
periments 1 & 2 of Kazanina et al. (2007), obtaining log prob-
abilities for the whole vocabulary at the site of the relevant
name in each sentence. We then regressed the log proba-
bilities of the 200 frequent names, on features representing
the gender of the name, the gender of the preceding pronoun,
whether these genders matched and finally whether the pro-
noun c-commanded the name.

For the materials from both experiments, the main effects
of the first three of these features were very significant (p <
0.001), with similar effect sizes in both cases. To summarize,
male names are overall more probable than female names,
and matching pronoun and name genders are more probable
than mismatching. There is also a main effect of pronoun gen-
der which makes names less probable overall following a male
pronoun. The direction of the main effect of the c-command
feature varied between Experiment 1 and Experiment 2, re-
flecting the different constructions used in the two sets of ma-
terials. For Experiment 1 the regression showed a very signif-
icant (p < 0.001) increase in the probabilities of names within
the c-commanded constructions, but this effect was a less sig-
nificant (p < 0.01) reduction in probabilities for Experiment 2.

In terms of an effect analogous to the longer reading times
for gender mismatched names in coreferentially licit positions,
we need to look at the interaction of the gender mismatch and
c-command features. For Experiment 1, this interaction is sig-
nificant (p < 0.01), but of the wrong sign. In this case, proba-
bilities are lower for gender-matching pronoun-name pairings
when coreference is licit than when it is ruled out by Princi-
ple C. For Experiment 2, the sign is correct, but the effect is
only weakly significant (p < 0.05). In both cases, the mag-
nitude of the coefficient for the interaction term is at least 5
times smaller than the main effect of gender mismatch. In
other words, the model mainly reacts to a general gender mis-
match between pronouns and names, and only weakly and
inconsistently takes into account their syntactic relationship.

In a linear regression of the log probabilities against the
same set of features on the concatenation of both datasets,
the main effects for all features are now very significant (p <
0.001). However, the interaction term is now not significant
even at the p < 0.1 level.

Experiments 3 & 4

Experiments 3 & 4 repeat the analyses described above with
an LSTM trained on a modified dataset. Two explanations for
the lack of sensitivity to Principle C seen in Experiments 1 &
2 are possible. The first is that the LSTM architecture is not
suitable for learning the required structure, while the second is
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that the relevant signal is not present in raw text. Perhaps the
LSTM fails to adjust its probabilities consistently in response
to Principle C simply because there was nothing to be gained
from doing so during training.

In fact, we found that the training data contained a weak,
though nonetheless significant, interaction between gender
mismatch and the c-command structure, leaving open the
question of whether the LSTM would have learned Principle
C given a stronger signal. Here, we examine whether we can
force the LSTM to pay attention to this constraint, by making
the relevant signal in the data much more statistically salient.

In particular, we modify a subset of training sentences to
always enforce a gender match between pronoun and name
when coreference is licit. We find those sentences containing
one of the pronouns he or she followed somewhere further
on by one of the 200 names employed in the previous experi-
ments. We then use the AllenNLP tools (Gardner et al., 2017)
to obtain constituency parses for these 53K sentences and
thus identify those cases where the pronoun c-commands the
name. Leaving these cases where coreference is illicit alone,
we substitute in a random name from our 100 most frequent
male names to the candidate slot following every male pro-
noun, and a random name from the 100 most frequent female
names following every female pronoun. We then retrain the
LSTM on the modified 3M sentences training set using the
code from Gulordava et al. (2018) and repeat the analyses
applied to Experiments 1 & 2.

For both sets of materials, all the main effects are very sig-
nificant (p < 0.001), but the interaction term is not significant
even at the p < 0.1 level. In other words, making the signa-
ture of Principle C more salient in the training data, has not
enabled the LSTM to take advantage of this constraint more
effectively in making predictions.

Conclusions
Our experimental results indicate that the LSTMs did not learn
the Principle C constraint on coreference when trained as lan-
guage models on large amounts of raw text. This was true
both for the original training data and also for the modified
version in which the statistical signature of Principle C was
made much more salient. In contrast, children as young as
3 do respect this constraint (Lust, Eisele, & Mazuka, 1992),
whether acquired innately or by learning from the input. Fu-
ture work will investigate what additional enhancements are
needed to enable neural networks to handle these corefer-
ence structures effectively.
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