Adding biological constraints to CNNs makes image classification more
human-like and robust
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Abstract

In this study, we show that when standard convolutional neural
networks (CNNs) are trained end-to-end on datasets containing
low-level and spatially high-frequency features, they are suscep-
tible to learning these potentially idiosyncratic features if they
are predictive of the output class. Such features are extremely
unlikely to play a major role in human object recognition, where
instead a strong preference for shape is observed. Through a
series of empirical studies, we show that standard CNNs cannot
overcome this reliance on non-shape features merely by making
training more ecologically plausible or using standard regular-
isation methods. However, we show that these problems can
be ameliorated by forgoing end-to-end learning and processing
images initially with Gabor filters, in a manner that more closely
resembles biological vision.

Introduction

A fundamental property of human image recognition is that
it is largely a function of analyzing shape (Biederman, 1987).
A wealth of data from psychological experiments show that
the global shape of an object plays a privileged role in object
recognition compared to other diagnostic features such as size,
colour, luminance or texture (Biederman & Ju, 1988; Landau,
Smith, & Jones, 1988). In other words, it has a shape-bias.
However, it is still unsettled whether we learn to have a shape-
bias through experience or there are innate inductive biases
that make shape a privileged cue (see Elman, 2008 and Xu,
Dewar, & Perfors, 2009).

Similarly there are two possible reasons why CNNs trained
in an end-to-end manner may develop an inductive bias to
rely on shape. Some recent studies have argued that shape
may be the most diagnostic feature in a trained dataset and
this causes the CNN to learn to rely on shape to perform
categorisation — i.e., CNNs can have a learned shape-bias
(Ritter, Barrett, Santoro, & Botvinick, 2017; Feinman & Lake,
2018). On the other hand, a shape-bias might be innate and
the product of the architecture of the CNN itself. For instance,
the multiple layers and pooling operations enable a CNN to
combine features of the stimuli in a hierarchical manner, and
this might result in lower layers representing high-frequency
features and higher layers representing more abstract features,
such as shape (Bengio, Courville, & Vincent, 2013).

Our goal in this study was to tease apart whether any shape-
bias is learned or innate in standard CNNs. To do this, we
trained some standard CNNs on a dataset that modified the
standard CIFAR-10 dataset to simultaneously contain shape-
based and non-shape features (Figure 1). We found that stan-
dard CNNs trained on this modified dataset learn to depend on
non-shape features that are diagnostic of object categories and
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often fail to learn anything about shape under these conditions.
These results suggest that that vanilla CNNs do not have an
innate shape-bias. (Note that this does not imply that CNNs
do not encode shape information under any circumstance, but
that shape does not seem to be weighted more than other
diagnostic features).

We hypothesised that the lack of innate shape-bias in stan-
dard CNNs reflects a lack of an innate biological constraint
in how they model human vision. To test this hypothesis we
replaced the first convolutional layer of a standard CNN with a
bank of unmodifiable Gabor filters designed to mimic simple
cells in V1 cortex. We found that doing this, comes at a cost
to the network’s overall performance but made the CNN far
less reliant on non-shape features, such as noise-like masks
or single diagnostic pixels. We also found that these results
were robust across a range of neurophysiologically plausible
parameters for the Gabor filters showing that it's not the partic-
ular value of the parameters but the process of filtering itself
that makes classification robust to non-shape features present
within the dataset.

Methods

We modified the CIFAR-10 dataset so that each image con-
tained not only features that pertain to the shape (e.g. object
outlines) but also features without shape information. As non-
shape features we used three types of noise-like masks that
were combined with the original image. The salt-and-pepper
mask was created by taking the transformed greyscale image
and setting each pixel to either black or white with a probability
p- This probability, p, was fixed for each category but varied
between categories in the range [0.03,0.06]. The additive
uniform noise mask was created by taking the transformed
greyscale image and adding a value sampled from the uni-
form distribution [ — w, 4 w] to this image, where u was the
mean that depended on the category and varied in the range
[—50,50] and 2w was the width of the uniform distribution and
was set to 8. The single pixel mask was created by choosing
a random location, (x,y), (sampled from a uniform distribution
on the interval [0,224]) on the image and changing the colour
of the pixel to a value ¢ (sampled from a uniform distribution
on the interval [0,255]). Each of x,y and ¢ were sampled inde-
pendently for each image from a Gaussian distribution with a
constant variance and a mean that depended on the category
of the image. If any value in a sampled set of (x,y,c¢) values
fell out of their respective range, that value was re-sampled.
We trained the model on these modified sets of images and
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(a) Salt-and-pepper noise

(b) Additive noise

(c) Single diagnostic pixel

Figure 1: A modified dataset consisting of images taken from CIFAR-10 dataset (scaled up to 224x224 pixels) as well as a
noise-like mask. (a) Image + salt-and-pepper noise-like mask; (b) Image + uniform additive noise mask; (c) Image + a single
diagnostic pixel (a dotted red circle is inserted here to illustrate the location of the pixel).

tested it under three conditions. During the ‘Same’ condition,
the test set was modified in exactly the same manner as the
training images. In contrast, during the ‘Diff’ condition, the pa-
rameters of the noise masks for each category were swapped
with another category, creating a cue conflict. Finally, during a
‘NoPix’ condition, we presented the network with a version of
the image without any mask, with the premise that the differ-
ence between the performance in ‘Same’ and ‘NoPix’ condition
should quantify the relative extent to which the network relied
on shape-based and non-shape features.

Simulations were carried out using either a 16-layer VGG
network or 101-layer ResNet network provided by the torchvi-
sion package of Pytorch and Keras with TensorFlow. These
networks were either trained from scratch on the modified
dataset or were first pre-trained on ImageNet and then trained
on the modified dataset. Since the results remain qualitatively
the same, we report the results for the networks pre-trained on
ImageNet.

Results

We conducted three experiments, one for each type of noise
mask described above. The results are shown in Figure 2. Dur-
ing all three experiments, we observed that both networks clas-
sify images with a nearly perfect accuracy during the ‘Same’
noise condition. When noise masks are swapped (‘Diff’ con-
dition), this accuracy drops; when the mask is completely
removed (‘NoPix’ condition), the categorisation accuracy is
nearly at chance. For both the salt-and-pepper and single
pixel experiments, performance in the ‘Diff’ condition is either
at chance or below chance indicating that the trained network
learns to categorise based on the noise-like mask in both ex-
periments. During the single pixel experiment, accuracy in the
‘NoPix’ condition was somewhat better for ResNet-101 than
VGG-16 indicating that, in this case, the network may be pick-
ing on some other features of the image beside the noise-like
mask. However, even in this case, there is a significant drop
in performance compared to ‘Same’ condition. The additive
noise experiment showed an intriguing behaviour: when the
noise mask was completely removed (‘NoPix’ condition) the
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model performed worse than when the images contained a
noise mask from a different category (‘Diff’ condition). In other
words, removing the mask makes the image less informative
for the model, not only compared to images with the correct
category-correlated (‘Same’) mask, but also compared to im-
ages with the incorrect (‘Diff’) mask — the model seems to rely
on the presence of the noise-like mask to make an inference.

In further experiments, we also examined whether the type
of training had any effect on these results. In one experiment,
we modified the dataset such that only some of the categories
contained a diagnostic pixel. In another experiment, we trained
the network on an unmodified CIFAR-10 training set before
subsequently training on the modified training set containing a
diagnostic pixel. In both experiments, results remained qualita-
tively the same as above — i.e., if the network learnt anything
about shape, it wasn’t able to generalise this knowledge across
categories or across time. Furthermore, we obtained the same
pattern of results irrespective of the type of regularisation used
(we tried several well-known regularisation methods including
Batch Normalization, Weight Decay and Dropout) or type of
optimisation algorithm (SGD / RMSProp / Adam). These re-
sults clearly indicate that the model learns to rely on features
of the noise-like mask, rather than any shape-related informa-
tion present in the images. Even in the extreme case, where
only one pixel amongst 50,176 was diagnostic of the category,
the model prefers to classify based on this feature over other
shape-related features present in each image.

A biologically plausible feature space

In this section, we tested the hypothesis that adding a biological
constraint may make the network less reliant on the noise mask
types that are diagnostic of output categories of stimuli. To do
so, we replaced the first convolutional layer of VGG-16 with
unmaodifiable Gabor filters, rather than allow the model to form
its own feature space end-to-end. Gabor filters have been
shown to be a good model of the simple cell receptive fields
found in the early visual cortex of cats (Jones & Palmer, 1987)
and primates (Petkov & Kruizinga, 1997) and are regarded as
the standard model of simple cells amongst neuroscientists.
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Figure 2: Accuracy on test images under the three types of noise-like masks shown in Figure 1. Training images contain (a)
salt-and-pepper noise, or (b) additive uniform noise, or (c) just one diagnostic pixel. Test performance is shown under three
conditions — ‘Same’: the mask has same parameters during testing and training within each category; ‘Diff’: the parameters of
masks used during testing are swapped with another category; ‘NoPix’: No mask is inserted. The dashed (red) line indicates
chance performance and error bars show 95% confidence intervals.

Methods
The Gabor function is an oriented sinusoidal grating convolved
with a Gaussian envelope:
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with the following definitions:

Xg =xcos0+ysin® yg = —xsin®+ ycos0
where x and y specify the position of a light impulse in the
visual field (Petkov & Kruizinga, 1997).

Rather than specify the width of the Gaussian component
in pixels, it is more natural to set the bandwidth, b, which
describes the number of cycles of the sinusoid within the Gaus-
sian envelope. The standard deviation of the Gaussian factor,
o, is therefore set indirectly through b, and A:

/In2 pL |
2 21

Throughout each simulation where Gabor filters were used,
the first convolutional layer of VGG-16 was replaced with a fixed
bank of Gabor filters (each 31 x 31 pixels) designed to model
the early primate visual cortex and match the number of output
channels (64) defined in the original CNN. Each such bank had
eight orientations, 6 € {0,%,% 3% % 5t 3% JT} radians, four
phases, y € {0,%,, 3} radians, and two aspect ratios, Y €
{1,1}, (defining the ellipticity of the filter) while the wavelength,
A, and bandwidth, b, were systematically varied.

As with the previous experiments, CIFAR-10 images were
mainipulated by adding one of the following types of noise: salt-
and-pepper, additive uniform or single pixel but remained in
their original size of 32 x 32 pixels. All images were converted
to greyscale according to the ITU BT.601 conversion formula
(Y =0.299-R+0.587-G+0.114- B) and presented under the
same training and test conditions described previously.
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Results

To test the hypothesis that the reliance of the network on the
noise masks was due to high spatial frequency information
contained in these images, we systematically varied the two
key parameters of the Gabor filters most pertinent to this idea:
A and b. The wavelength of the sinusoidal component, A was
varied in the range [3..8] pixels/cycle while the bandwidth of
the Gaussian component, b, was chosen from {1.0,1.4,1.8}
octaves in accordance with measurements from macaque vi-
sual cortex (Petkov & Kruizinga, 1997), with ¢ automatically
calculated for each combination of parameters according to
Equation 3. For each experimental condition, five realisations
were run with different randomised initial conditions.

An illustrative example of the familiar performance bar chart
for A =5and b={1,1.4,1.8} is given in Figure 3 (for direct
comparison to earlier results in Figure 2), showing performance
to be largely insensitive to variations in b for this range.

It is evident from the largely flat performance profiles across
the test conditions in Figure 3 that the network is no longer
reliant upon the noise masks for correctly classifying the
CIFAR-10 images (albeit with some lingering difficulty with
additive noise). In all cases, performance on the ‘Diff’ condition
is greater than zero and performance on the ‘NoPix’ condition is
greater than chance (10%). This trend can also be seen to hold
across a biologically relevant range of variation in bandwidth.

Discussion & Conclusions

In a series of simulations we found that standard CNNs do not
show an innate shape-bias when a stronger non-shape sig-
nal is present within the training dataset. Instead, the models
learnt to categorise objects on the basis of non-shape fea-
tures strongly correlated with the output class, even when the
features were as small as a single pixel. Of course, we engi-
neered our dataset to contain diagnostic non-shape features,
but it is well-known that datasets contain various biases due to
the different conditions and motivations for their construction
(Torralba & Efros, 2011). So biases like the one we engineered
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(a) Salt-and-pepper noise

(b) Additive noise
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Figure 3: Accuracy on test images under the three types of noise-like masks. In all cases, the wavelength of the sinusoid was
fixed, A = 5. The shading of the bars indicates the filter bandwidth. The dotted (grey) line indicates performance on the standard
CIFAR-10 images, the dashed (red) line indicates chance performance and error bars show the 95% confidence intervals.

may well be present in these datasets. If CNNs do indeed rely
too heavily on non-shape features present within datasets, it
could also be the source of various idiosyncratic behaviours
such as being confounded by fooling images (Nguyen, Yosinski,
& Clune, 2015) and being overly sensitive to colour, noise or
even single pixels in images (Su, Vargas, & Kouichi, 2017).

One reason why humans may be less vulnerable to relying
on non-shape statistical regularities may be that the architec-
ture of our visual system imposes innate constraints on the
type of information used for classification. One such constraint
is that primary visual cortex is organized into hyper-columns
composed of simple cells that identify edges of various orien-
tations. Our hand-coding of the Gabor filters is well motivated
by the fact that neurophysiology has shown that the ordered
arrangement of simple cells are not learnt in response to the
statistical structure of the world, but are innately specified and
emerge in visual cortex in animals who have no visual experi-
ence (Chapman & Stryker, 1993; Wiesel & Hubel, 1974).

In line with this view, we observed that vulnerabilities to these
non-shape features can be ameliorated when we replaced end-
to-end learning by learning on a bank of Gabor filters that are
the standard model of simple cells (Jones & Palmer, 1987).
Moreover, we chose the parameters of these Gabor filters
based on neurophysiological data and found that these results
hold, not just for particular parameter values but for an entire
range. In conclusion, the crucial element does not seem to be
learning the correct values of these parameters but having the
correct form of filters.
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