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Abstract

Despite several decades of functional neuroimaging
research the relationship between brain networks
and cognition remains elusive. This is because
the taxonomy of cognitive processes was developed
largely blind to the functional organization of the
human brain. In this work, we leverage recent ad-
vances in artificial neural networks to gain insights
into shared cognitive processes among six different
cognitive tasks. We trained a single recurrent neural
networks (RNN) to perform cognitive tasks. In this
manner, we were able to evaluate shared represen-
tations between multiple cognitive tasks without re-
lying on predefined cognitive processes. Next, we
tested if the learned representations provide a good
explanation for human brain activation patterns as-
sociated with these tasks. While we found little simi-
larity between the RNN’s learned representation and
real brain data, our approach offers a roadmap to
gain more mechanistic insights into how cognitive
processes map to brain networks with potential im-
portant implications for studying cognitive dysfunc-
tion in disease.
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Introduction
Understanding how brain networks give rise to cognitive
processes is one of the primary endeavours of cogni-
tive neuroscience. For this, cognitive neuroscientists
instruct humans to perform cognitive tasks while under-
going functional neuroimaging. These cognitive tasks
are designed to tap specific cognitive processes. How-
ever, the taxonomy of cognitive processes used in the
field has largely been developed based on psychology
theory; a discipline predating neuroimaging research
(Bilder et al., 2009). Therefore it is unclear how well
this taxonomy relates to the neurobiological underpin-
nings of cognitive processes. Recent empirical findings
indicate the urgent need for a revised, data-driven (Eisen-
berg et al., 2019) and neurobiologically-informed cog-

nitive taxonomy (Lorenz et al., 2018). Artificial Neural
Networks (ANNs) have shown promising parallels with
their neurobiological counterparts (Cueva and Wei, 2018;
Carnevale et al., 2015) and, contrarily to brain systems,
ANNs allow full access to its inner calculations. The un-
derstanding of the ANN’s shared representations across
tasks and its mechanisms might shed light on the rela-
tionship between cognitive paradigms and the structures
that originate function (Kriegeskorte and Kievit, 2013).

The primary goal of this work was to create an ANN,
that effectively solves six cognitive tasks, such as work-
ing memory, reaction-time and inhibitory control tasks,
taking inspiration from the work developed by (Yang et al.,
2019). A secondary aim consisted of trying to interpret
the artificial network’s representations and understand
how specific inputs are modelled by the network. By
studying the ANN’s activations for each given task we
were able to gain some insights into how each cognitive
task was parameterized by the network. Finally, we also
studied similarities in task representation between the
ANN and large-scale brain networks when solving the
same tasks.

Methods
Model architecture
We employed a RNN to solve the different tasks. In
particular, we employed LSTMs, as they contain an addi-
tional state cell that can be subsequently analysed and
avoids the vanishing gradient problem for large tempo-
ral dependencies (Hochreiter and Urgen Schmidhuber,
1997) . The entire model was trained end-to-end through
supervised learning using batches containing an equal
number of trials from every task trained. Stochastic Gra-
dient Descent was applied for the optimization of the
objective function. Most of the model’s hyperparameters
were chosen using empirical heuristic methodology. The
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model was trained with a first hidden-layer of 256 LSTM
units, a second hidden-layer of 128 LSTM units and an
output layer with a softmax as the activation function, as
the predicted response is categorical.

Cognitive tasks

To train the model, an artificial dataset was generated
with 2000 trials simulating six tasks that the model was
intended to learn: the Go Task, the Anti Go Task, the
Memory Go Task, the Memory Anti Go Task, the Re-
action Go Task, and the Reaction Anti Go Task. An
example of a Go task trial is depicted in Figure 1. The in-
put signal that is fed into the model can be decomposed
into 4 different aspects – the rule signal, the fixation unit
and the two modalities. The rule signal corresponds to
a one-hot vector which determines which one of the six
tasks is being executed. The fixation unit cues when
and whether the model should react to the stimulus or
not. The latter 64 nodes represent two separate modal-
ities of 32 nodes each. Each modality can display an
arbitrary signal, by activating one of its 32 nodes, which
will define the expected response from the model. To
simulate noise in underlying neural representations, the
input matrix is combined with additive Gaussian noise
(i.e. N(0;0.1)). In total there are Nin = 1+6+32∗2 = 71
input units. Each one of them runs for 600 iterations,
which accounts for one trial of a given task. The output
signal (33 x 600) is a one-hot vector representation of
the desired action of the model. It is composed of a
fixation unit and a 32-unit reaction output, that repre-
sents the expected reaction of the network based on the
stimulus direction. In total there are Nout = 1 + 32 = 33
output units. This trial structure is common to every task
to allow consistency for the network’s input and output.
The task being resolved dictates the moment and the
direction of the reaction to the stimulus.

Comparison with Meta-analytic Terms

To investigate whether the ANN’s learned representa-
tion is consistent with brain activation associated with
these tasks, the online platform for large-scale meta-
analysis of neuroimaging data, Neurosynth (Yarkoni
et al., 2011), was used. Neurosynth allowed us to identify
meta-analytic brain activation maps based on specific
terms that most closely related to the six tasks learned
by the ANN: (1) “finger tapping”, “motor task”; (2) “re-
action time”, “reaction times”; (3) “switch”, “switching”;
(4) “wm task”, “working memory”; (5) “nogo” and (6)
“incongruent”. Next, we extracted meta-analytic brain
activation within seven large-scale brain networks (Yeo
et al., 2011) and cross-correlated these network-based
activation maps, resulting in seven neural representa-
tional similarity matrices that could be compared to the
ANN’s similarity matrix. The ANN’s similarity matrix was
built on the correlations of variance across tasks.

Figure 1: Example of a Go Task trial. a: Rule signal
indicates the task being considered. b: Fixation unit. It
falls to zero when the model is expected to react. c: Ex-
pected output of the fixation unit. The model is expected
to mimic the fixation unit, in order to understand when
it should react. d: Input modalities which simulate the
direction of the stimulus. e: Expected output signal.

Results
The first experimental objective was to successfully
train a model to simultaneously perform 6 different
cognitive tasks. This objective was achieved with a
general accuracy of 93% but , comparatively, the model
underperforms on the Reaction Time tasks where it only
achieves 66% accuracy. It is also notable how, for the
other 4 tasks, the accuracies on the 200 trials are alike,
with special emphasis on the Go and Anti tasks (i.e.
85.9% and 85.8% respectively). When the LSTM layers
were substituted by Dense layers or vanilla-RNN layers,
the model got stuck on local minima with around 50%
accuracy.

Model Analysis
To characterise how each layer contributed to the model
performance, the different layers’ activations were anal-
ysed with the non-linear dimensionality reduction tech-
nique, t-SNE (Van Der Maaten and Hinton, 2008).
Through this method, it is possible to analyse both the
final outcome and the activations of the inner layers, in-
cluding the cell states of the LSTM units. It is evident
from Figure 2a that trials are organised by when the
model has to react, with later responses occupying the
distal region of each cluster and the earlier ones being
represented in the proximal regions. It is also evident
from Figure 2b, that there is a significant similarity be-
tween trials of a given task across the cell states of the

273



Figure 2: Four t-SNEs plots, each representing 200 trials as scattered points relating to the model’s cell state. a:
The activations gradually change for each cluster depending on the model’s moment of reaction. b: There is a clear
clustering of activations depending on the task being solved. c: The second hidden-layer activations has a more
abstract signal and activation variance is high for each task.

Figure 3: Similarity matrices for the Neurosynth meta-
analytic maps on the 7 different Yeo networks using
Pearson correlation followed by Fisher z-transformation
(a) and for the ANN’s variance across tasks (b). Colour
codes correlation intensity.

first layer of the LSTM. The 6 clusters are grouped by
the task being performed, which demonstrates how the
model represents how different tasks relate to different
expected reactions. Finally, the t-SNE analysis of the sec-
ond hidden layer cell state, depicted in Figure 2c, does
not present clustering of trials as the representations for
a given task are more dissimilar. This is expected when
considered that each second layer unit is affected by the
activations of every first layer unit. Posteriourly, a vari-
ance study identified both Reaction-Time tasks with the
larger amount of variance on the activation of its trials.

Blocking of neural unit responsible for
inhibition
Unit 28 from the first hidden layer of the model displayed
high variance across trial activations on several tasks,
with special emphasis on the Go, Delay Go, Anti and
Delay Anti tasks. To further understand its effects on the
overall output of the model, the unit was eliminated by re-
ducing its weights to zero. The model was subsequently
analysed and it was observed that the model’s accuracy
dropped sharply to 49%. This effect was present across
tasks with the exception of the Reaction tasks. The out-
puts were compared to the original model and it was
observed that without unit 28 the model was not able to
follow fixation before the expected reaction. The altered
model reacts to the stimulus the moment it is shown,
not being able to solve tasks that require inhibitory be-
haviour.

Exploring comparisons with brain activations
We considered whether and where the neural network’s
approach for modelling tasks would be similar to how
the human brain processes similar types of tasks. To
do so, it was first analysed how the model’s activations
correlated for different tasks. This similarity matrix be-
tween tasks could then be compared to an equivalent
similarity matrix created from neural data taken from a
large meta-analytic database of brain activation patterns
(the Neurosynth database). Here, the 7 brain networks
were considered separately.

There is no significant correlation between the model
and the networks’ similarity matrices after applying
Fisher z-transformation (Figure 3). The low correlation
of the Reaction Time tasks ("rtgo", "rtanti") with all other
tasks in the model stands out as markedly different to the
meta-analytic results. This result is by itself important as
it suggests the model learned an efficient mechanism
distinct from how the brain relates the different tasks.
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Discussion
The ANN identified in this work efficiently solved different
cognitive tasks simultaneously; however, it did so in a
way that does not appear to correlate with how similar
tasks are represented in the brain. This lack of similarity
is interesting in itself; it suggests multiple solutions for
mechanistically performing cognitive tasks can exist and
the cognitive taxonomy underlying human cognition may
be just one of the many possible cognitive taxonomies
that could plausibly exist (Poldrack and Yarkoni, 2016).
Despite the different mechanism displayed, unit 28 of
the first hidden-layer seems to control the model’s inhi-
bition system or sustained attention. It constrains the
model’s reaction until it receives the instruction to follow
the stimulus. In the human brain, similarly to our model,
damages to the frontal lobes, caudate nucleus and sub-
thalamic nucleus result in a lack of control of inhibition
(Carnevale et al., 2015; Hampshire and Sharp, 2015).

Future work is needed to better refine the artificial net-
work model, e.g., by adding in more biologically-plausible
constraints, capturing a wider array of cognitive tasks,
and training the model on more ecologically valid stimuli
and tasks. The tasks don’t correspond completely to
the terms obtained from the meta-analysis. Instead of
using the Neurosynth platform, humans could be tested
using fMRI on the same tasks the model is executing.
The model architecture/hyperparameters could also be
explicitly optimized to maximize the overlap between net-
work and neural structure across tasks (e.g., by using
correlation), rather than optimizing model performance
as we have done here.

There are limitations to our approach that justify the
lack of correlation between the tasks of the ANN and
the tasks from the meta-analysis. Still, there are several
possibilities to bridge that gap. As better models, cap-
turing a closer correspondence between artificial neural
network and neural representations are developed, they
will be useful for understanding the space of cognitive
processes. In this sense, this work serves as a roadmap
for a better insight into the mechanisms of cognitive pro-
cesses.
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