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Abstract:

What mechanism supports our ability to recognize
objects over a wide range of different retinal locations?
Most research in psychology and neuroscience
suggests that learning to identify a novel object at one
retinal location only supports the ability to identify that
object at nearby retinal locations, and to date, neural
network models of object identification show a similar
restriction in generalization. As a consequence, it is
widely assumed that objects need to be learned at
multiple locations. We challenge this view and show the
capacity to generalize across retinal locations (what we
call on-line translation tolerance) has been
underestimated in humans and artificial neural
networks. Two eye tracking studies demonstrate that
novel objects can be recognized following translations
of 9° and even 18°. Additionally, computational studies
showed that convolutional neural networks can achieve
similarly robust generalization when a mechanism
(Global Average Pooling) was built in to generate larger
receptive fields.

Keywords: Translation Tolerance; Translation
Invariance; Object Recognition; Vision

Introduction

We can identify familiar objects despite the variable
images they project on our retina, including variation
in image size, orientation, illumination, and position on
retina. How the visual system succeeds under these
conditions is still poorly understood. Here we focus on
our ability to identify objects despite variations in
retinal location and consider the extent to which the
visual system relies on “on-line” vs. “trained”
translation tolerance. In the case of on-line tolerance,
learning to identify an object at one location
immediately affords the capacity to identify that object
at multiple retinal locations. Trained tolerance, by
contrast, refers to the hypothesis that we learn to
identify familiar objects across locations by explicitly
training the visual system to identify each object
across a broad range of retinal locations.

Most of the empirical research in psychology and
neuroscience suggests that on-line tolerance is
restricted to a few degrees of visual angles (e.g., Afraz
& Cavanagh, 2008; Cox & DiCarlo, 2008; Dill & Fahle,
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1997; Dill & Fahle, 1998; Nazir & O’Regan, 1990;
Newell, Sheppard, Edelman, & Shapiro, 2005). Figure
1 outlines a selection of studies that used different
experimental paradigms and found highly limited (in
one case no) translation tolerance. Based on the
outcome of such studies, Chen et al. (2017) state that
translation tolerance is limited to a few degrees and
write: “Given limited translation-invariance from a
single glance in human vision, it is reasonable to
conclude that saccades (rapid eye movements) are
the mechanism for translation-invariant recognition in
practice”. (p. 544)
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Figure 1. Behavioral studies of translation tolerance.

Work with artificial neural network models has also
reported limited generalization when stimuli are
presented at untrained locations. For example, Elliffe,
Rolls and Stringer (2002) showed that a biologically
inspired neural network model called VisNet
supported on-line translation tolerance, but each
stimulus had to be trained at multiple spatial locations
(after training in 7 locations the model generalized to
an 8th and 9th location), and the authors only tested
small translations (8 pixels in a 128x128 retina).

The above findings have led most theorists in
psychology and neuroscience to endorse the ‘trained’
account of translation tolerance (Chen et al., 2017;
Cox & DiCarlo, 2008; Kravitz et al. 2008). Despite
empirical and computational results, there are still
reasons to question this hypothesis. With regards to
the behavioral studies, the stimuli that show limited
translation tolerance are typically unlike real objects
(e.g., Dill & Fahle, 1998; see Figure 1a) and/or are very
similar to each other (e.g., Cox & DiCarlo, 2008; see
Figure 1c). Differentiating between unfamiliar and
highly similar items may rely on low-level visual
representations that are retinotopically constrained
(Kravitz et al., 2008).
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With regards to the computational studies, there is
reason to believe deep convolutional neural networks
(CNNs) might support more robust on-line translation
tolerance. Indeed, these models are designed to
support  translation  tolerance by including
convolutional layers and pooling layers in order to
speed up training and ensure that high-level units
have larger receptive fields. That said, we are only
aware of four studies that have assessed on-line
tolerance in CNNs, and surprisingly, these studies
have reported highly restricted tolerance (see below).
Here we show that some classes of CNNs can
support robust on-line translation invariance.

Behavioral Experiments

Here we report two experiments each with 10
participants. Eye-movements were monitored using
the Eyelink 1000 plus system (SR Research). In the
learning phase participants were trained to categorize
the 24 objects as ‘A’ or ‘B’ (see Figure 2). Participants
were required to maintain their gaze on a centrally
located fixation-cross for 1000ms for an object to
appear. If gaze moved 1.5° beyond the fixation-cross,
a mask replaced the object.
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Figure 2. Twenty-four novel objects taken from Leek
et al. (2016). Pairs of objects are matched for similar
local features but differ in global configuration.

Experiment 1 assessed 9° on-line translation
tolerance: All 24 objects were first studied at the
center of the screen and then twelve objects were
trained 9° to the left of fixation and the other 12
trained 9° to the right of fixation (training continued
until 12/12 consecutive correct answers given at each
peripheral location). In the test phase, all objects were
tested at 9° left, 9° right, and centre of fixation.
Experiment 2 assessed 18° on-line translation
invariance: half images were presented 9° to the right,
and half 9° to the left of central fixation (none at the
center) (training continued until 24/24 consecutive
correct answers given in each location). All objects
were tested 9° to the left and 9° right of fixation.

The results of Experiments 1-2 are summarised
in Table 1. Near complete on-line tolerance was
obtained following 9° shifts (Experiment 1) and robust
tolerance extended to 18° (Experiment 2).
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Table 1. Mean (+/- 95% CI range) Accuracy scores
in Experiment 1 and 2. Columns show degrees by
which the test presentation was displaced from the
nearest training location and the screen position of
that test presentation.

Mean (+/- 95% CI range) Accuracy
Displacement 0° 0° 9° 18°
Centre Peripheral Peripheral Peripheral
Screen Position (trained) (trained) (novel) (novel)
Exp 1 (N=10) 93% (5%) 83% (5%) 81% (6%) not tested
Exp 2 (N=10) not tested 97% (3%) not tested 89% (7%)
Simulations

We examined on-line translation tolerance in
convolutional neural networks (CNNSs) that rival human
capacity at identifying objects in some conditions.
These models use convolution operations which learn
to detect the same features across all spatial
positions, and in most cases, include pooling layers
that aggregate information from multiple spatially
organized units to a single unit that represents more
abstract image features. Although these features
might be expected to support on-line translation
tolerance the only studies to date have found that
on-line tolerance is highly restricted (Chen et al., 2018;
Furukawa, 2017; Kauder-Abrams, 2017; Qi 2017) (see
Figure 3). A key feature of these previous models is
that they did not include a Global Average Pooling
(GAP) layer designed to provide larger receptive fields
that may be relevant to supporting more robust
on-line tolerance.

Here, we used a popular CNN with and without a
GAP layer (VGG16; Simonyan & Zisserman, 2014) by
training the network to classify the 24 ‘Leek’ images
(Figure 2) as ‘A’ or ‘B’ at restricted locations, and then
testing its accuracy at five displaced locations. The
Leek images were 50x50 pixels and were presented
within 400x400 pixel space to allow for large
displacements at test. In all simulations, training
continued until the model reached 100% accuracy.
The results are displayed in Table 2.

Table 2. Mean Accuracy of CNN when classifying
Leek (2016) stimuli over large translations
Displacement

VGG16 pretrained on 30 110 190 270 310
imagenet px pXx px pX pX

GAP
No GAP

0.97 0.99 0.96 0.97 0.92

0.84 0.51 0.57 0.49 0.51

Clearly GAP is required in order to support robust
on-line translation tolerance.



Discussion

In two behavioral experiments we demonstrated that
participants trained to recognise novel objects at one
retinal position can recognise the same objects at
untrained distal retinal-locations (up to 18°
displacement in Experiment 2) with high accuracy,
and in simulations we have identified a condition in
which  CNNs can also support extreme on-line
tolerance. Figure 3 highlights how much greater these
translation tolerance effects are compared to past
studies.
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Figure 3: Comparison of accuracy scores of previous
CNN simulations with our pre-trained CNN that
included GAP, plotted as a function of translation
distance (pixels).

The findings have important implication for theories
of vision. Most computational models of word and
object identification only support highly restricted
on-line translation tolerance and instead depend on
trained tolerance to explain how humans identify
images across a wide range of retinal locations. For
example, Chen et al. (2017) developed a CNN model
of number identification designed to support
translation invariance in a biologically and
psychologically plausible manner. The model showed
zero on-line tolerance at displacements beyond 12
pixels (which they equate to 2° of visual angle; see
Figure 3). Our behavioral findings falsify this and other
theories that rely on trained tolerance in order to
account for our ability to identify objects over a wide
range of retinal locations (Dandarund et al., 2013;
DiBono & Zorzi, 20183; Elliffe, Rolls & Stringer, 2002).

Researchers have identified neurons in
inferior-temporal cortex (IT) with a range of receptive
field sizes (ranging from 2.8° to 26°; for review see
Kravitz et al., 2008), but the larger receptive fields
have been attributed to trained translation tolerance
(e.g., Chen et al.,, 2017; Cox & DiCarlo, 2008). Our
findings suggest that these large receptive fields may
be the product of mechanisms that support extreme
on-line translation tolerance.

Note, we are not claiming that our results support
the conclusion that the visual system supports
complete on-line translation invariance. There was a
small decrement in performance when novel objects
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were presented to novel locations in Experiment 2.
For this reason we can only conclude that the visual
system supports extreme on-line translation
tolerance. That said, the results do not rule out
complete on-line invariance. It is possible that
performance was better in the trained locations
because performance in this condition was not only
supported by newly learned representations within
high-level visual systems that support invariance, but
also low-level visual systems that support a more
limited degree of on-line translation tolerance. There is
no reason to assume that the low-level visual system
did not contribute to the performance with our stimuli
as well as high-level visual systems, leading to slightly
better performance in the same location. In any case,
our results clearly support the conclusion that
high-level visual systems supports extreme on-line
translation tolerance, and future research is needed to
determine whether on-line invariance is supported.
With regards to the modelling, it is clear why we
found much greater on-line translation tolerance
compared to past work, namely, we used CNNs with
a Global Average Pooling (GAP) layer that is standard
in state-of-the art convolutional networks. Although
previous models included some degree of pooling, it
was clearly not sufficient to produce the large
receptive fields that mediated the extreme tolerance
we observed. When using GAP, the receptive fields of
the neurons at the final layer of the model cover 100%
of the pixel space. It is important to emphasize that
we are not committed to the hypothesis that the large
receptive fields in human visual system are the
product of a GAP-like mechanism. This is one
possible solution, but the receptive fields that support
extreme translation tolerance may have an entirely
different source. For example, in GEON theory (e.g.,
Biederman, 1987), objects are identified on the basis
of identifying parts and the relations between the
parts rather than some sort of template matching
approach that characterizes CNNs. Translation
tolerance on this approach is due to the claim that the
parts and relations are coded independently of retinal
position, but the GAP mechanisms in CNNs are poorly
suited for this form of computation (Sabour, Frosst, &
Hinton, 2017). We hope our findings generate more
research into understanding the mechanisms that
support extreme translation tolerance, including
assessing the extent to which GAP or alternative
mechanisms play a role in high-level human vision.
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