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Abstract
The ventral visual system is known to exhibit hierarchical
structure, where early and higher visual areas respond
to simple and relatively complex features respectively.
A clear, quantitative explanation for the image computa-
tions performed in each visual area is, however, lacking.
Feed-forward hierarchical convolutional neural networks
have been a step forward in attempting to model these
computations. Here we model the temporal evolution of
EEG responses recorded during passive viewing of multi-
ple object categories using layers of a convolutional neu-
ral network trained to perform image categorization. We
found a modest hierarchical correspondence between the
depth of the layer in the neural network and the neural re-
sponse time at which model and neural representations
are maximally correlated. However, we show that shal-
low layer and deep layer representations start to corre-
late with neural representations at similar time bins. A
reliability analysis indicated that the modest correspon-
dences are far from the limit imposed by variability of the
data, but are largely due to the inadequacies of the model.
These results provide suggestive evidence that early vi-
sual areas perform more than just simple feature detec-
tion and that strictly feed-forward convolutional neural
network models are insufficient to model human object
processing dynamics.
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Introduction
Object recognition is a complex task that humans perform ef-
fortlessly. In order to understand the mechanisms underlying
this function, we need to be able to model the neural com-
putations performed on an image. Recent success in lever-
aging the capabilities of large-scale compute power have en-
abled the training of machine learning models with millions
of parameters, resulting in the development of hierarchical
convolutional neural networks (CNNs) that when trained on a
large image set surpass human object recognition capabilities
(Simonyan & Zisserman, 2014).

In hierarchical CNNs, features extracted in the shallow parts
of the neural network qualitatively resemble edge detectors
and features extracted deeper in the network are much more

complex. Artificial neurons in these models have been shown
to correspond well to time-averaged single-unit recordings in
visual areas of macaques (Cadena et al., 2019; Yamins et
al., 2014). Furthermore, a human neuroimaging study has
reported that there is a hierarchical correspondence in both
space and time between these neural networks and the hu-
man ventral visual pathway (Cichy et al., 2016). In that study,
the feature representation of shallow layers corresponded to
early time points and that of deeper layers corresponded
to later time points in the temporal dynamics of human ob-
ject processing, measured using magnetoencephalography
(MEG) and functional magnetic resonance imaging (fMRI)
data fusion. Furthermore, two fMRI studies have reported that
shallow layers corresponded to early visual areas and deeper
layers corresponded to higher visual areas (Cichy et al., 2016;
Güçlü & van Gerven, 2015).

Here we seek to understand how well purely feed-forward
CNNs map on to time-evolving neural data acquired using
electroencephalography (EEG), which, like MEG, is known for
its high temporal resolution. As in the previous MEG study
(Cichy et al., 2016), we used representational similarity anal-
ysis (RSA, Kriegeskorte, Mur, and Bandettini (2008)) to com-
pare how well representative layers of a CNN map on to dif-
ferent time points in the EEG data, hypothesizing that layers
early in the CNN would map on to early time points in the neu-
ral data and that deeper layers in the CNN would map on to
later time points in the neural data. We found that, depending
on the similarity metric used in RSA, there was a positive re-
lationship between the depth of the layer in the CNN and the
time at which peak correlation occurred between the model
and the data. On the other hand, we found no relationship be-
tween the onset time of correlations and the depth of the layer
in the CNN for any of the metrics. These results only partially
support the hypothesis of a hierarchical correspondence be-
tween CNNs and time-resolved object representations in hu-
mans.

Methods

The hierarchical nature of CNNs suggests that the following
features should be observed in neural data. Firstly, the onset
of correlations between model layer representations and neu-
ral representations should shift progressively as a function of
layer depth. Secondly, the time of peak correlation should shift
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similarly.

In order to map stimulus representations from different lay-
ers of the CNN to EEG data, we used RSA as it provides a
method to compare data from different modalities. In order to
compare representations as a function of neural response la-
tencies, we have used an open data set of high temporal res-
olution EEG data (Kaneshiro, Arnardóttir, Norcia, & Suppes,
2015) that was analyzed in a previous study (Kaneshiro, Per-
reau Guimaraes, et al., 2015). In that study, EEG responses
were recorded from N = 10 humans passively viewing 72 im-
ages of objects from six different categories: human body
(HB), human face (HF), animal body (AB), animal face (AF),
fruit and vegetable (FV) and inanimate object (IO). After pre-
processing and cleaning, the temporal resolution of the data
was 62.5 Hz (16 ms). In order to reduce the effects of different
levels of noise inherent to each electrode, multivariate noise
normalization was performed on the data prior to downstream
analyses (Guggenmos, Sterzer, & Cichy, 2018).

A key ingredient in RSA is the similarity metric that is
used to create the representational dissimilarity matrix (RDM).
Three different similarity metrics were used to compute the
EEG RDMs: pairwise decoding accuracy (using linear dis-
criminant analysis), cross-validated Euclidean distance and
cross-validated Pearson correlation. These metrics have been
described previously in Guggenmos et al. (2018). EEG RDMs
were computed at each time bin, resulting in time-resolved
RDMs that show the temporal evolution of similarities between
stimuli.

The CNN model that was used in this study is VGG19
(Simonyan & Zisserman, 2014), which is a 19-layer neural net-
work consisting of five convolutional and max pooling blocks,
succeeded by three fully connected layers. It was trained to
perform object categorization using the ImageNet (Deng et
al., 2009) data set which consists of over one million images
and 1000 image categories. The representative layers that
we used in the model-data comparison were pool1, pool2,
pool3, pool4, pool5 and fc2, corresponding to each block
in VGG19. Using the Pearson correlation similarity metric,
an RDM was constructed at each of these layers, resulting in
what we call “layer RDMs”. As the next step in RSA analysis,
each of these layer RDMs was rank correlated with each time-
resolved EEG RDM, allowing us to observe when EEG RDMs
start to correlate with layer RDMs and when EEG RDMs are
most correlated with particular layer RDMs.

In order to compute the time at which the onset of non-zero
correlations occurs, a two segment piece-wise linear func-
tion was fit to the correlations from pre-stimulus onset time
to 112 ms. The correlation onset time is defined to be the time
bin at which the two line segments intersect. The time of peak
correlation is defined to be the time bin at which the maximal
correlation between the CNN layer representations and neural
representations occurs. The average time bins and error on
the mean for each of these cases were computed using 1000
bootstrap samples across subjects.

Results
Representational Dissimilarity Matrices

RDMs are measurements that show us the similarity of in-
ternal representations for pairs of stimuli. The RDM can be
highly structured reflecting object category-level representa-
tion (Kriegeskorte et al., 2008). The category-level structure
for our present analyses can be seen in Figure 1, which shows
EEG RDMs for each of our three similarity metrics. Com-
mon to all three RDMs, averaged across time, is a degree
of high-level categorical structure. This can be seen from the
blocks along the diagonal of each matrix, indicating that ob-
jects within a particular category can be differentiated from
objects in other categories, but not from objects within the
same category. In particular, the EEG responses to human
faces (HF) can be robustly differentiated from objects of other
categories.

A B C

Figure 1: RDMs computed from the EEG data, averaged
across all time bins. A: Decoding accuracy; B: Euclidean dis-
tance; C: Pearson correlation. Axis labels are the stimulus
categories. Within each category, there are 12 images.

Correlation Time Courses

We obtained correlation time courses by computing the rank
correlation between each layer RDM with the EEG RDMs
computed at each time bin of the neural response. These time
courses show us how the similarity between model represen-
tations and EEG representations evolves over time. Figure 2
shows the correlation time courses for the representative lay-
ers in the CNN where the EEG RDMs were computed using
the decoding accuracy similarity metric. Qualitatively, we first
observe that correlations start to increase at approximately
the same time for all the layers (60− 70 ms). Secondly, we
note that the time at which the peak correlation occurs for each
layer increases as the depth of the layer increases, reaching
a maximum of approximately 150−160 ms for deeper layers
versus 120 ms for shallow layers. Finally, the noise ceiling
(black line in Figure 2) computed using the EEG data is much
higher than the correlations computed between VGG19 and
the data. The first two observations will be quantified in the
next section.

Comparison of Onset and Peak Correlation Times

We quantify the relationship between the depth of the layer
in the CNN with the neural response time at which correla-
tion onset occurs by fitting a two segment linear function on
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Figure 2: Correlation time courses computed for all the rep-
resentative layers in the CNN. Solid lines indicate the mean
correlation across participants and shaded regions indicate
the standard error of the mean across participants. The grey
vertical bar is the time of stimulus onset.

the correlation time course and determining the time of peak
correlation, as described in the methods. Figure 3 visualizes
how onset and peak time vary with the depth of the layer in
the CNN. Each subplot corresponds to the specific similarity
metric used to compute the EEG RDMs. Across each similar-
ity metric, the slope of the line of best fit for the mean onset
times as a function of layer depth is not significantly different
from zero (p > 0.05), indicating that there is no relationship
between onset time and layer depth. When decoding accu-
racy and Pearson correlation are used for the similarity met-
ric, there is a positive relationship between the time of peak
correlation and the depth of the layer in the CNN (Decoding:
slope= 6.3, p< 0.05; Pearson: slope= 11.3, p< 0.05). How-
ever, when the Euclidean distance metric is used, the slope is
not significantly different from zero.

Discussion

We provide partial support for the underlying hypothesis of a
hierarchical correspondence between the CNN layer activa-
tions and the neural responses. For two of the three similarity
metrics used to compute EEG RDMs, we found a positive rela-
tionship between the time of peak correlation with CNN layer
depth. However, we did not find a relationship between the
correlation onset times with layer depth for any of the similar-
ity metrics.

Our results regarding the positive relationship between time
of peak correlation and depth of CNN layer corroborate previ-
ous findings that there is some hierarchical correspondence in
time between the complexity of features obtained from feed-
forward CNNs and neural responses (Cichy et al., 2016; Seel-
iger et al., 2017). Seeliger et al. (2017) show that with source
reconstructed MEG responses, shallow layer features of the
CNN predict sources at early time bins and deep layer fea-
tures of the CNN predict more sources in later time bins. Their
onset time analyses were based on a different criterion than
we used: they used the time at which a highly significant cor-
relation was present, whereas we measured time when corre-

Figure 3: Left: Time at which correlation onset occurs. Right:
Time at which peak correlation occurs. Red: Decoding accu-
racy. Green: Euclidean distance. Blue: Pearson correlation.
These times are computed for each layer for each similarity
metric used. Solid lines indicate the mean computed from
1000 bootstrap samples across participants and the shaded
regions indicate the standard error of the mean computed
from 1000 bootstrap samples across participants.

lation started to increase. Since correlation time courses were
not shown, it is unclear whether their metric for onset time is
more relevant to our metric for peak correlation or onset time.

Cichy et al. (2016) reported that peak correlation time be-
tween MEG RDMs and layer RDMs occured at early time
bins for shallow layers and at later time bins for deeper lay-
ers, similar to the observations from our analyses. A similar
finding regarding onset times was reported in the supplemen-
tary material of Cichy et al. (2016) (cf. Suppl. Table 2), but not
commented on. Fixed correlation onset times across layers is
not compatible with the hypothesis of hierarchical correspon-
dence since one expects an accumulation of synaptic delays
as one ascends area by area over the ventral stream hierar-
chy. Taken together, the available analyses show that there
is only partial support for the hierarchical correspondence be-
tween the CNN and the data.

Our observation that the RDMs obtained from the penulti-
mate layer and from a shallow layer of the CNN start to corre-
late with EEG RDMs at a relatively early time bin is consistent
with results of Yang, Tarr, Kass, and Aminoff (2018) and of
Seeliger et al. (2017). In particular, Yang et al. (2018) show
that features common between the shallowest and deepest
layers of the CNN have some predictive power on source re-
constructed MEG responses at early time points. Further-
more, Seeliger et al. (2017) show that mid to deep layer fea-
tures of the CNN can also predict source reconstructed MEG
responses at early time bins. These results and our observa-
tions suggest that aspects of the relatively complex features
of deeper layers in CNNs may be computed early in time and
presumably in early cortical areas. This suggests that feature
processing in early visual cortex may be more complex than
that suggested by shallow layers of CNNs.
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Future work needs to address two issues that our work
raises. Firstly, we note that the noise ceiling shown in Figure 2
is much higher than the achieved rank correlation values, in-
dicating that the deficiency is not in the neural data, but in the
model. This suggests that the use of a model incorporating
temporal dynamics in object processing may correlate better
with these data. Secondly, building models that make more
complex features accessible early in the architecture may pro-
vide an improved match to onset time data presented here,
in Cichy et al. (2016) and in Seeliger et al. (2017). Finally,
future work should also include implementing other methods
to compare model representations to neural representations
such as building linear mappings from model features to neu-
ral responses to see if findings in those settings corroborate
findings obtained while using other comparison methods and
quantitatively improve the quality of the comparisons.
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