Neural Network Mechanisms Underlying Confirmation Bias in Stimulus Estimation
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Abstract

Perception is influenced by past choices. For example,
an intermittent categorical choice biases the estimation
of average motion direction across two stimuli (confirma-
tion bias). To shed light on the underlying neural mecha-
nisms, we develop a ring attractor model that integrates
stimulus direction and represents a continuous estimate
of the average stimulus in the phase of an activity bump.
Depending on the relative strength of sensory input com-
pared to the intrinsic network dynamics, the model can
account for qualitatively distinct decision behaviors (uni-
form temporal weighting, and “recency” regime). We
studied two potential mechanisms underlying confirma-
tion bias and found that they predict different modula-
tions of the estimation curve: (i) applying an urgency sig-
nal after the first stimulus leads to a shift modulation,
(ii) a feature-based attention signal that boosts stimuli
that are consistent with the intermittent choice leads to
a gain modulation, the main feature observed in human
behavior. Our work suggests bump attractor dynamics
together with feature-based attention as a potential un-
derlying mechanism of confirmation bias in stimulus es-
timation tasks.
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Introduction

Perceptual decision making often involves making categori-
cal judgments based on estimations of continuous stimulus
features. It has recently been shown that committing to a
categorical choice biases a subsequent report of the stimu-
lus estimate by selectively increasing the weighting of choice-
consistent evidence (Talluri, Urai, Tsetsos, Usher, & Don-
ner, 2018). This phenomenon is known as confirmation bias.
The underlying neural mechanisms remain poorly understood.
Here, we developed a computational network model that can
integrate a continuous stimulus feature such as motion direc-
tion and can also account for a subsequent categorical choice.
We then studied potential mechanisms underlying confirma-
tion bias and found that including feature-based attention in
the model can explain the experimentally observed bias in
stimulus estimation.

Methods

Ring Model. The dynamics of the model are described in
terms of the firing rate, r(6,¢), of a neural population arranged
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in aring, ® € [—7, ™), obeying the following equation
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where T = 20 ms is the neurons’ time constant, and & is
the current-to-rate transfer function. The synaptic input con-
sists of a recurrent current due to the presynaptic activity at
a location 6’ with a weight w(8—6'), and an external cur-
rent 1(8,t). Both functions, I and w are written in terms of
their Fourier coefficients, I and wy (k =0,1,2,...), respec-
tively. The homogeneous external input is Ip = 2, and the
connectivity function w is given by wo = =2, w; = 1 and
wy = 0.5. We simulated Eq. (1) following the Euler scheme
with a time step Ar = 0.5 ms, and discretizing the space 6
into N = 200 evenly distributed angular locations. Stimulus
inputs Iyim = I1 - G (x,0%) +n(0,¢) are defined as the combi-
nation of a circular Gaussian function G with average direc-
tion 6%, and noisy fluctuations n(0,¢). The stimulus ampli-
tude is I; = 0.1 and its width is ogim = 10°. Noisy inputs
are modeled as independent Ornstein-Uhlenbeck processes
for each neuron (tToy = 1 ms, 6oy = 0.4). The urgency sig-
nal of Fig. 2B is modeled as an external input that combines
two Gaussians of amplitude 0.25, mean +90° and standard
deviation of 10°. Finally, the attentional modulation of Fig.
2C is modeled by multiplying the second stimulus by a fac-
tor [L+A; - G (x,45°) + Az - G2(x,45°)] for CW trials and
[1+A;-Gi(x,—45°) + Az - Go(x,45°)] for CCW trials, with
Al = 1.5,A2 =-0.5, o1 = 200, Oy = 30°.

Dynamics of the bump attractor. For stationary homoge-
neous inputs, Eq. (1) has either an homogenous or a local-
ized solution depending on the spatial profile of the connec-
tivity function w (Ben-Yishai, Bar-Or, & Sompolinsky, 1995).
Near the bifurcation, the dynamics of the bump reduce to the
normal form of a supercritical Turing bifurcation, and can be
expressed in terms of the amplitude, R, and phase, ¥, of the
bump as

TR =IR+1I cos (W —0°) — cR*+& (1), (2a)
o = D n(w—er)+ 20 (20)

where ¢ is a constant that depends on the particular form
of the connectivity profile, 6* is the average direction of the
stimulus, and &; (¢) and &, (¢) are independent Ornstein-
Uhlenbeck processes.

Results

Stimulus integration with bump attractor dynamics. We
studied the integration of noisy stimuli with a continuous fea-
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Figure 1: Stimulus estimation and categorization in the bump attractor network. (A) Schematic of the ring network with Mexican
hat like connectivity. (B) Network activity in a single trial starting with a bump of activity at 0° followed by two noisy stimuli
(average direction —20° and +40°, respectively). Top left: color-coded firing rate. Top-right: Activity bump after the first and
second stimulus. Bottom: temporal evolution of the bump phase. (C) Proportion of CW choices as a function of stimulus direction,
for two different stimulus durations. A CW choice corresponds to a positive bump phase at the end of the trial. (D) Continuous
stimulus estimation as a function of stimulus direction, obtained from the same simulations as in (C). The estimation corresponds
to the phase of the bump at the end of the trial. (E) Time-course of evidence integration (psychophysical kernels) obtained for

average stimulus directions of 0°.

ture (e.g. a random dot stimulus with different net motion di-
rections), in a neural network model based on a ring attrac-
tor network (Fig. 1). Due to strong recurrent connectivity, a
bump of activity emerges in this model at a position deter-
mined by the input, and this bump state persists when the in-
put is removed (Fig. 1B). Similar ring models have previously
been studied in the context of orientation selectivity in primary
visual cortex (Ben-Yishai et al., 1995) and in the context of
spatial working memory (Compte, Brunel, Goldman-Rakic, &
Wang, 2000). However, here we take a different perspective
and interpret the position (phase) of the activity bump as the
estimate of the integrated stimulus direction.

We found that the transient population response to chang-
ing stimulus input effectively integrates the stimulus as is
needed in typical decision making and estimation tasks that
require accumulation of evidence over time (Fig. 1B). In the
example trial (Fig. 1B), the activity bump starts at 0° (the ini-
tial position may correspond to a reference in a given task or
it may be random if no prior knowledge is available). The first
noisy stimulus with —20° average direction results in a tran-
sient population response: the bump initiates a slow move-
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ment towards the —20° position, with only minimal change in
its amplitude (“virtual rotation”, Ben-Yishai et al. (1995)). The
second stimulus, with 40° average direction, causes a slow
bump movement towards 40°. With the chosen parameters,
the network computes approximately the average of the two
stimuli and the resulting bump position is close to 10°.

To investigate whether the stimulus-dependent drift of the
bump is actually yielding a continuous estimation of accumu-
lated sensory input, we simulated many trials with noisy input
stimuli of different average motion directions (Fig. 1C-E). We
found that the probability of a CW choice depends on the evi-
dence strength (Fig. 1C), similar to the observed performance
ins psychophysical experiments (Talluri et al., 2018). This psy-
chometric curve becomes steeper for longer stimulus duration
(blue and orange lines in Fig. 1C), indicating that the model is
able to integrate sensory evidence over long timescales. The
precision of the estimation of the stimulus average also im-
proves with stimulus duration (Fig. 1D).

In order to directly test how the stimulus is integrated over
time, we computed the model's psychophysical kernel, ob-
tained from the difference between the average stimuli yield-
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Figure 2: Confirmation bias in continuous estimation after a categorical choice. (A) Ring model without additional mechanisms.
Top: Model architecture and illustration of a stimulus with 20° average direction . Middle: Single trial with a 0° stimulus leading
to a positive bump position corresponding to a CW choice, followed by a 20° stimulus. Bottom: Continuous estimation after
the second stimulus as a function of the average of the two stimuli, separately for CW and CCW choices. (B) Ring model
with urgency signal applied in the decision phase after the first stimulus. (C) Ring model with choice-dependent attentional
modulation. The exact same stimulus fluctuations and internal noise has been used in the three example trials in order to make

the bump trajectory comparable across the three models.

ing each choice (Fig. 1E). Stimulus fluctuations impacted the
choice throughout the trial, with increasing weight towards
the end of the stimulus (recency effect; e.g. Cheadle et al.
(2014)). This integration dynamics can be understood with
the help of a reduced two-dimensional equation for the ampli-
tude and the phase of the bump (Egs. (2a) and (2b) in Meth-
ods). The model can account for qualitatively distinct deci-
sion behaviors, depending on the relative strength of sensory
stimuli, I, compared to the amplitude of the bump, R. When
sensory inputs dominate over the intrinsic network dynamics,
later parts of the stimulus have an higher impact on the final
phase and the categorical choice than earlier parts (recency
regime; Fig. 1E). On the other hand, when the internal dy-
namics are stronger, the temporal weighting of stimulus infor-
mation is uniform (not shown). In sum, the ring model can
accumulate evidence at prolonged time scales and it can re-
produce the experimentally observed dependence of discrim-
ination and estimation accuracy on stimulus direction (Talluri
etal., 2018).

Neural network mechanisms underlying confirmation
bias. In order to reveal the potential neural mechanisms un-
derlying confirmation bias, we then used the model to mimic
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a recent psychophysical experiment that required both a cat-
egorical choice and a continuous estimation (Talluri et al.,
2018). In the experiment, subjects viewed two successive
random dot motion stimuli, and they had to make a categor-
ical choice (CW vs CCW) after the first stimulus and a con-
tinuous estimation of the average direction across both stim-
uli after the second stimulus. Subjects successfully integrated
evidence across both stimuli but their estimations were biased
reflecting selectively enhanced sensitivity for the second stim-
ulus if it was consistent with the intermittent choice.

We tested whether two plausible mechanisms in the model
can account for the observed confirmation bias: an urgency
signal applied after the first stimulus and an attentional gain
modulation during the second stimulus (Fig. 2). For the ease
of exposition we restricted our simulations to trials where the
first stimulus has 0° average direction, and the bias effect can
simply be visualized by comparing the estimation as a function
of the average stimulus direction for CW vs CCW choices (Fig.
2, bottom panel). Since the first stimulus is uninformative, the
intermittent choice is determined only by stimulus fluctuations
and internal noise (Fig. 2A, middle), and approximately half of
the trials lead to a CW and a CCW choice, respectively. This



effect of the noise explains why in the model without any addi-
tional mechanism the estimation is slightly different for CW vs.
CCW choices (Fig. 2A, bottom). This difference is however
much smaller than the psychophysically observed biases.

A possible way of introducing a choice-dependent bias is to
include an urgency signal in the model (Fig. 2B). This urgency
signal consists of an unspecific input to neurons around —90°
and 90° in the ring (see Methods), causing a movement of
the bump towards either —90° or +-90°, depending on which
one is closer to the current bump position. Thus, the bump
moves further away from the decision boundary, making it
easier to read out the categorical choice. Moreover, the mag-
nitude of the displacement is almost independent of the bump
phase and its direction is always consistent with the intermit-
tent choice. This leads to a choice-dependent shift modulation
of the final stimulus estimation (Fig. 2B, bottom), an effect that
contributed to the confirmation bias in the psychophysical ex-
periment.

The second way of introducing a choice-dependent bias
was through including an attentional modulation of the sec-
ond stimulus (Fig. 2C). The attention effect is modeled
as a feature-dependent gain modulation of visual neurons
(Martinez-Trujillo & Treue, 2004) that provide the input to the
ring model. Importantly, the “attentional spotlight” is chosen
to be consistent with the intermittent choice (Fig. 2C, top).
This gain modulation leads to a boost of the second stimu-
lus if it is consistent with the choice, and to a decrease if it
is inconsistent. The boost is larger for stimuli that are fur-
ther away from the 0° reference, yielding a choice-dependent
gain-modulation of the final estimation (Fig. 2C, bottom). This
gain-modulation resembles the stimulus-dependent confirma-
tion bias that was the main signature of confirmation bias in
human subjects.

Discussion

We showed that bump attractor dynamics emerging in a neu-
ral network model with ring-like connectivity structure pro-
vides a mechanistic model for stimulus integration of contin-
uous features such as motion direction. A categorical choice
(e.g. CW vs. CCW relative to a reference direction) can then
be obtained by “reading out” the bump position. Using this
model, we studied the potential neural mechanisms underly-
ing the recently observed choice-dependent bias that an in-
termittent choice has on the estimation of average motion di-
rection across two stimuli (Talluri et al., 2018). We found that
a shift modulation of the estimation curve, observed in a mi-
nority of subjects, can be explained by an urgency signal ap-
plied after the first stimulus. Gain modulation of the estimation
curve, as observed in most of the subjects, can be explained
by a feature-based attention signal that boosts stimuli that are
consistent with the intermittent choice. In future work we plan
put to test the hypothesis that feature-based attention under-
lies the confirmation bias in human MEG experiments.

Our novel model has several unique features: Modulation
of the excitability of the network results in either recency or
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uniform temporal integration, a temporal weighting that has
for example been observed in a category-level averaging task
(Cheadle et al., 2014; Wyart, de Gardelle, Scholl, & Summer-
field, 2012). This uniform or recency temporal integration is in
contrast to classical attractor models of decision making that
typically give more weight to the early part of the stimulus (pri-
macy effect; Wang (2002); Wimmer et al. (2015)). Further-
more, the architecture of our model is similar to the classical
model of parametric working memory (Compte et al., 2000)
but operating in a regime where it slowly integrates inputs.
Both models show persistent stimulus-related activity in delay
periods after stimulus presentation. Bump attractor dynam-
ics might therefore be a unifying neural mechanism underlying
both working memory and decision making, and it may provide
a substrate for evidence integration at prolonged timescales
(Waskom & Kiani, 2018).
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