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Abstract:  
Reinforcement learning (RL) paradigms are commonly 
used in Cognitive Science research on human learning. 
These paradigms are often used in combination with 
computational models to estimate individual differences 
in learning parameters. Recently, it has been proposed 
that such parameter estimates can be used to better 
understand psychiatric conditions (Montague, Dolan, 
Friston, & Dayan, 2012). However, to be used as such, it 
is essential that the test-retest reliability of these 
paradigms and computational models is established. The 
present study seeks to close this gap by investigating the 
test-retest reliability of standard RL models in the context 
of two canonical paradigms: a probabilistic RL task with 
gain and loss feedback and a reversal learning task 
(Cools, Clark, Owen, & Robbins, 2002; Frank, Seeberger, 
& O’reilly, 2004). This study obtained test results from 
n=150 participants for each task via the online testing 
platform Amazon Mechanical Turk with a between-test 
interval of five weeks. Several standard versions of 
Rescorla Wagner models are fitted to the choice data in 
R to study the test-retest reliability of resulting parameter 
estimates. Test-retest reliability is studied in regard to 
behavioral measures and model parameters.  

Keywords: reinforcement learning; computational 
modelling; test-retest reliability  

Introduction 

Psychology is experiencing a replicability crisis. One of 
the potential causes underlying this problem may be 
lacking test-retest reliability of canonical test methods 
(Leppink & Pérez-Fuster, 2017). Cognitive Science and 
Cognitive Neuroscience increasingly use reinforcement 
learning tasks for computational modelling of choices to 
infer underlying patterns of learning. Concerns have 
been raised about the robustness of such 
computational modelling results, with test-retest 
reliability problems shown in relation to oversimplified, 
or overparameterized, computational models (Collins & 
Frank, 2012), misalignment of the model and 
experiment design (Spektor & Kellen, 2018), and 

assumptions about dynamic versus fixed parameters 
(Nassar & Gold, 2013). Some of these problems could 
be prevented by first establishing the model 
identifiability and recovery (Palminteri, Wyart, & 
Koechlin, 2017). However, the participants or task 
design may also play a role in performance on test re-
test reliability (e.g. due to strong path dependency in 
dynamic tasks).  No prior research reported an 
empirical test of reliability of parameter estimates 
across different sets of computational models. The 
present study seeks to close this gap by testing the test-
retest reliability of two canonical RL paradigms: a 
probabilistic RL task with gain and loss feedback 
(Pessiglione, Seymour, Flandin, Dolan, & Frith, 2006) 
and a reversal learning task (Cools et al., 2002).  

Methods 

Participants 

Participants located in the United States completed 
each task via the online testing platform Amazon 
Mechanical Turk with a between-test interval of five 
weeks. Participants were allowed to take part in each 
task once and all participants included during T1 were 
invited to re-take the task five weeks later. The 
probabilistic gain/loss (PGL) task was completed by 
(n=142) participants during T1 and (n=93) during T2. 
The reversal learning (RVL) task was completed by 
(n=154) during T1 and (n=64) during T2. Behavioral 
analysis and computational modelling included 
participants whose performance met inclusion criteria 
during both T1 and T2, (n=69, m/f: 44/25, age=35(11)) 
in the PGL task and (n=47, m/f: 23,23, age=39(12)) in 
the RVL task (i.e. ‘returners’). Exclusion criteria 
included failing to provide a valid MTurk ID, timing out 
on >20% of trials, and comments after completing the 
task that indicated misunderstanding the task. 
Participants were excluded when overall accuracy 
dropped <50% (PGL task) or below 55% (RVL task) or 
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when they chose stimuli with the same laterality >20 
(PGL) or >30 (RVL) times in a row.  

Tasks  

Two canonical decision-making tasks were tested: a 
probabilistic RL task with gain and loss feedback (PGL, 
Pessiglione et al., 2006) and a reversal learning task 
(Schlagenhauf et al., 2014; Cools et al., 2002). All 
aspects of task design were kept as in the cited studies 
except for slightly adapted stimuli. Choice stimuli in the 
RVL task were geometric shapes and in the PGL task, 
images of everyday objects. Feedback stimuli were an 
image of a $1 bill with the headline “Gain”, an image of 
a crossed out $1 bill with the headline “Loss” and an 
image of a neutral grey box with the headline “Neutral”. 

Behavioral analysis  

Three behavioral measures were analyzed: accuracy, 
win stay and lose shift. Accuracy is defined as the 
number of times the stimulus with a higher reward 
probability was chosen, divided by all trials. Win stay is 
the number of repeated choices in trials following 
positive feedback divided by all trials following positive 
feedback. Lose shift is the number of shift responses 
following negative feedback divided by all trials 
following negative feedback. Timed-out trials as well as 
trials with 50-50 reward probability (only occurred in 
RVL task) were excluded. Test-retest reliability of each 
behavior was studied using Pearson’s correlation and 
the Intra-class correlation coefficient (ICC (3,k)) over all 
returners between T1 and T2. ICC(3,k) scores were 
interpreted following (Koo & Li, 2016), with r<0.5 
indicating ‘poor’, . 5 < r < .75 ‘moderate’, . 75 < r < .9 

‘good’, and r > .9 ‘excellent’ reliability. 

Computational modelling 

Reinforcement learning algorithms were fitted to 
participants’ choice behavior to infer underlying 
parameter values (Sutton & Barto, 1998). Specifically, 
different adaptations of the Rescorla-Wagner model 
were used (Rescorla & Wagner, 1972). In this model, 
choices result from a trial-by-trial calculation of 
anticipated outcomes (𝑉) of a choice (𝑐), weighed by 

prediction errors (𝛿) and the learning rate (𝛼).  

𝑉c,𝑡+1 = 𝑉c,𝑡 + 𝛼𝛿Vc,t
 

The prediction error constitutes the trial-by-trial 
mismatch between an anticipated outcome and the 
observed outcome. 

𝛿Vc,t
= 𝑅𝑡 −  𝑉c,𝑡 

A modification was applied using two learning rates to 
differentiate between learning from positive and 
negative prediction error . A second modification was to 
add a parameter to weigh the extent to which 
participants use feedback to infer value-updates about 

the unchosen stimulus. Three variations of this ‘double-
updating’ parameter were tested together with one and 
two learning rates. First, 𝜅 = 0 to model the absence of 

such inference, second, 𝜅 = 1 to model full updating, 
assuming anticorrelated reward for the two stimuli, and 
third, 𝜅 as free parameter 0 < 𝜅 < 1 for individually 
weighted updating of the unchosen stimulus trial by trial. 
The third modificsation was to add a free parameter γ 
moderating the decay of the learning rate(s) over the 
course of the task, tested with one and two learning 
rates. All models were fitted in the programming 
language R. In total, 8 models were fitted to choices in 
each task for T1 and T2, resulting in 32 model fittings in 
total. A softmax function was used to generate a trial-
by-trial probability of the observed choice behavior, 
given the modelled value estimates and accounting for 
decision noise in the free parameter (θ). 

p(choice) =
exp(θ ∗ 𝑉choice)

∑ exp (θ ∗ 𝑉choice) + exp(θ ∗ 𝑉~choice)
 

 
Free parameters were initialized at random values 

(0 < 𝛼, 𝜅, γ < 1) and (0 < θ < 10) for each participant 
and constrained to these parameter boundaries except 
the decay parameter, which was constrained (0 < γ <
4). All models were fitted using a general-purpose 
optimization algorithm based on the Nelder-Mead 
method (Nelder & Mead, 1965). Each model was fitted 
to each participant with 20 random initial parameter 
values to avoid getting stuck in local minima. The best 
fitting parameter estimates as indicated by lowest AIC 
value were stored for each subject.  

Results 

Behavioral results 

Participants learn in both tasks  

In the PGL task, included participants in T1 (n=119) 
achieved a mean hit rate of 69.25% (SD=10.41%) and 
during T2 (n=78) of 72.33%(9.49%). Returners (n=69) 
achieved hit rates of 70.44%(10.36%) during T1 and 
72.63%(8.55%) during T2, with no significant difference 

in accuracy between T1 and T2, 𝑡(68,2) = 1.59, 𝑝 =
.116. In the RVL task, included participants at T1 (n=92) 

achieved a hit rate of 62.13%(10.58%) and those at T2 
(n=52) 63.09%(10.23%). IQ scores and n-back scores 
were highly correlated in both tasks between T1 and T2, 
RVL IQ: r = .61, p < .001, n-back: r = .65, p < .001 and 

PGL IQ: r = .72, p < .001, n-back: r = .37, p < .01. 

 
Returners (n=47) achieved a mean hit rate of 

65.72%(9.41%) during T1 and of 57.03%(8.11%) during 
T2, both significantly above chance, T1: t = .63, p <
.001, T2: t = .55, p < .001, however with a significant 

drop in accuracy between T1 and T2, t(47,2) =
6.79, p < .001 (Fig. 1 a-b).  
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Accuracy is more reliable in RVL than PGL task  

In the PGL task, Pearson’s correlation coefficient of 
accuracy between T1 and T2 was significant but small, 
r(69) = .28, p = .019. The ICC was significant but 
‘poor’, ICC(3, k) = .43, p = .01. In the RVL task, the 
correlation of accuracy between T1 and T2 was 
significant, r(47) = .5, p < .001, and the ICC was 

significant and ‘moderate’, ICC(3, k) = .67, p < .001. 

Win stay and lose shift are reliable in both tasks  

In the PGL task, Pearson’s correlation coefficient was 
significant for win stay: 𝑟(69) = .53, p < .001 and lose 

shift: 𝑟(69) = .45, p < .001. This was mirrored by 

‘moderate’ ICC scores, win stay: ICC(3, k) = .67, p <
.001, lose shift: ICC(3, k) = .61, p < .001.  Equally, in the 
RVL task, these behaviors were correlated between T1 
and T2, win stay: 𝑟(47) = .62, p < .001, lose shift: 

𝑟(47) = .55, p < .001 and corresponding ICC values 
were ‘good’, win stay: ICC(3, k) = .76, p < .001, and 

‘moderate’, lose shift: ICC(3, k) = .7, p < .001.  

Computational modelling results 

In the PGL task, best model fit during T1 and T2 was 
achieved by the model with two learning rates and no 
double updating (T1: AIC = 139.98, T2: AIC = 141.32). 
In the RVL task, best model fit during T1 and T2 was 
achieved by the model with two learning rates and 
individually weighted double-updating, (T1: AIC =
211.23, T2: AIC = 212.51). Adding a decay parameter 
did not improve model fit in either task. In the PGL task, 

no estimated parameters by 
the best-fitting model 
exhibited a significant 
correlation between T1 and 
T2, although a trend 
emerged for θ, 𝑟(69) =
.23, p = .057. The ICC was 
significant but ‘poor’ for θ, 

ICC(3, k) = .37, p = .029. No 
other model yielded more 
than one significantly 
correlated parameter 
estimate between T1 and 
T2.  

 
In the RVL task, 

estimated values by the 
best fitting model were 

correlated for 𝛼𝑛𝑒𝑔, 𝑟(47) =

.37, p = .01, mirrored by a 

‘moderate’ ICC, ICC(3, k) =
.54, p = .005. In all other 
models with two learning 

rates, estimates for 𝛼𝑛𝑒𝑔 

were significantly correlated between T1 and T2 as well. 
No model yielded more than two significantly correlated 
parameter estimates between T1 and T2. In both tasks 
and for both T1 and T2 the learning rates related to 
positive and negative prediction error were correlated 
with win stay and lose shift behavior respectively (with 
two exceptions, Table 1).  

Table 1: Correlation of behavior and learning rates.  

Task  T1  T2 

PGL  Win stay, 𝛼𝑝𝑜𝑠 .49** .31** 

 Lose shift, 𝛼𝑛𝑒𝑔 .15 .05 

RVL  Win stay, 𝛼𝑝𝑜𝑠 .65** .49** 

 Lose shift, 𝛼𝑛𝑒𝑔 .52** .55** 
* p<.05, ** p<.001  

Discussion 

Most behavioral measures, such as win stay and lose 
shift, showed substantial individual differences (Fig. 1c-
d) and moderate to good test re-test reliability in both 
tasks over a time span of five weeks. This suggests 
both tasks capture robust individual differences in 
learning.  Furthermore, the correlation between win stay 
and lose shift behaviour and learning rates from positive 
and negative prediction errors respectively suggests 
these RL models capture crucial behavioural 
phenotypes. However, in most models, including the 
best fitting model, only one parameter was correlated 
between T1 and T2. For the PGL task, no specific 

Figure 1: Choices (a-b) and behavioral measures T1 and T2 (c-d). PGL task (a,c), RVL (b,d). 
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pattern emerged, whereas for the RVL task, the 
negative learning rate (𝛼𝑛𝑒𝑔) appears to be a crucial and 

robust factor in determining individual differences. 
 

Our results suggest more work is needed to ensure 
reliable parameter estimates from reinforcement 
learning models. Considering experimental paradigms, 
one advantage of RVL over PGL may be that it requires 
more steady learning, potentially leading to a better fit 
of learning models. Although more dynamic learning 
tasks introduce more variability in behavior, it is 
possible that in this case they result in more robust 
parameter estimates. Second, we have not explored all 
possible RL models. Future work will compare a larger 
model space, including Bayesian models and additional 
parameters (e.g. ‘stickiness’). Lastly, work is planned to 
compare model performance between fitting 
procedures (Log Likehood vs Hierarchical Bayesian). 
For instance, Bayesian approaches like Stan produce 
parameter estimates for each participant as probability 
distributions instead of point-estimates, which helps 
mitigate parameter-identifiability problems. 
 

Conclusion 
Test-retest reliability of research methods is critical for 
generating robust findings and making inferences about 
individual differences. We found behavioral measures 
of canonical reinforcement learning paradigms show 
moderate to good reliability between test sessions with 
a five-week interval. However, the parameters 
estimated through standard computational RL models 
did not (yet) show such robust results. Our results urge 
caution when interpreting estimated parameter values 
as individual differences in latent processes underlying 
learning. Further work is needed to investigate ways of 
improving test-retest reliability of parameter estimates. 
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