
Scalable simulation of rate-coded and spiking neural networks on shared memory
systems

Helge Ülo Dinkelbach (helge-uelo.dinkelbach@informatik.tu-chemnitz.de)

Julien Vitay (julien.vitay@informatik.tu-chemnitz.de)

Fred H. Hamker (fred.hamker@informatik.tu-chemnitz.de)
Chemnitz University of Technology - Artificial Intelligence Lab

Chemnitz 09107, Germany

Abstract

The size and complexity of the neural networks inves-
tigated in computational neuroscience are increasing,
leading to a need for efficient neural simulation tools
to support their development. Several neuro-simulators
have been developed over the years by the community,
all with different scopes (rate-coded, spiking, mean-field),
target platforms (CPU, GPU, clusters) or modeling prin-
ciples (fixed model library, code generation). We com-
pare here the current version of the neuro-simulator AN-
Narchy against other state-of-the-art simulators on rate-
coded and spiking benchmarks with a focus on their par-
allel performance.

Keywords: Rate-coded neurons, Spiking neurons, Parallel
Computing

Introduction

Several simulators are available for the simulation of spiking
networks, such as NEST (Gewaltig & Diesmann, 2007), Auryn
(Zenke & Gerstner, 2014), Brian2 (Stimberg, Goodman, Beni-
choux, & Brette, 2014) and GeNN (Yavuz, Turner, & Nowotny,
2016). There are however only a few supporting rate-coded
networks: ANNarchy (Vitay, Dinkelbach, & Hamker, 2015),
NEST (Hahne et al., 2017) and recently Draculab (Verduzco-
Flores & De Schutter, 2019). Several publications have high-
lighted the computational differences between the simulation
of rate-coded and spiking neural networks (Brette et al., 2007;
Brette, 2015; Blundell et al., 2018). These implementations
can differ dependent on the chosen target platform, i.e. on
CPUs or GPUs (Brette & Goodman, 2012). Some neuro-
simulators such as NEST, ANNarchy, Brian2, and GeNN use
code generation to bring these implementations under one in-
terface, see (Blundell et al., 2018) for a recent review. Alter-
natively, specialized simulators with predefined neural models
such as Auryn benefit from a high optimization level for spe-
cific operations, e.g. random number generation and vector-
ization (Zenke & Gerstner, 2014). To our knowledge, NEST
and ANNarchy are the only simulators covering both rate-
coded and spiking networks. In this article, we compare the
parallel performance on shared-memory systems of NEST,
ANNarchy, Brian2, Auryn and Brian2GeNN (Stimberg, Good-
man, & Nowotny, 2018) on rate-coded and spiking bench-
marks.

ANNarchy
ANNarchy is an equation-oriented neuro-simulator written in
Python, able to simulate both rate-coded and spiking networks
using code generation in C++ and CUDA. Its interface and
main concepts are presented by Vitay et al. (2015). Since this
publication, ANNarchy has been extended to allow the simu-
lation of spiking networks on GPUs. The parallel implementa-
tion for rate-coded and spiking networks has been largely im-
proved, especially through the use of ring buffers for delayed
event-driven synaptic transmission.

Models for benchmarks
We investigate balanced recurrent networks using 1) a
stochastic linear rate-coded neuron model and 2) a
conductance-based integrate-and-fire spiking neuron model.
In each case, the population consists of N neurons divided into
80% excitatory and 20% inhibitory neurons (Dale’s law). The
neurons are reciprocally and randomly interconnected with a
fixed number of connections per neuron for the rate-coded
benchmark and a fixed probability for the spiking one.

Linear rate-coded benchmark

The linear rate-coded benchmark is a reimplementation of the
NEST model lin rate ipn as described by Hahne et al. (2017).
The firing rate ri of a neuron depending on its inputs r j is de-
scribed by the following stochastic differential equation (SDE):

τ
dri

dt
+ ri =

C

∑
j=1

wi j r j +
√

τdW (1)

whereas C is the total number of incoming connections.
Each neuron is connected to 10% of the other neurons. The
connection weights wi j are fixed, with excitatory weights set at
0.1√

N
and inhibitory ones at −0.5√

N
. The pre-synaptic firing rates

r j are delayed by 5 ms to simulate synaptic delays. dW rep-
resents a stochastic Wiener process which is implemented
using a normal distribution: dW = σ ·N (µ, 1) where µ = 0,
σ= 5 and τ= 10 ms. The Euler-Maruyama numerical method
is used to discretize the SDE with a step size of dt = 0.1 ms.

COBA benchmark

The COBA model proposed by Brette et al. (2007) is a bench-
mark for spiking networks based on the work of Vogels and
Abbott (2005). The network consists of 4000 neurons (3200

526

This work is licensed under the Creative Commons Attribution 3.0 Unported License.

To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0



excitatory and 800 inhibitory). The neuron model is described
by an ordinary differential equation for the membrane potential
vi for each neuron:

τ
dvi

dt
= (EL− vi)+gexc

i (Eexc− vi)+ginh
i (Einh− vi)+ I (2)

and the two conductance channels gexc
i and ginh

i :

τexc
dgexc

i
dt

=−gexc
i (3)

τinh
dginh

i
dt

=−ginh
i (4)

All neurons are randomly connected to each other with
a probability of 0.02. All parameters were set according to
Brette et al. (2007) and Vogels and Abbott (2005).

Performance comparison
We compare the recent versions of NEST 2.16.0, ANNarchy
4.6.8, Brian2 2.2.2.1, Brian2GeNN 1.3.1 and Auryn 0.8.2. The
collection of implementation codes used in this paper can be
found online1. The simulations were performed on a dual
socket system with Intel Xeon X5660 (6 cores with 2,8 GHz)
and a NVIDIA Kepler K20m, running Linux Mint 19, g++ 7.4
and CUDA SDK 9.0.

COBA benchmark

Fig. 1 shows the normalized computation time in seconds as
a function of the number of threads for NEST (blue line), AN-
Narchy (orange line), Auryn (green line) and Brian2 (red trian-
gle). It also depicts a comparison of the GPU performance of
ANNarchy (diamond) and Brian2GeNN (dot). We used Auryn
to generate and store the connectivity matrices and loaded
them for the other simulators to ensure the comparability of
the networks. The simulation was performed for ten seconds
of simulated biological time.

NEST is the only simulator in this comparison using a
Runge-Kutta 4 method to solve the ODEs as the Euler im-
plementation patch used by Zenke and Gerstner (2014) and
Vitay et al. (2015) is not working with the recent version of
NEST. One can assume that this different numerical method
is responsible for a large fraction of the observed difference
with the other simulators. As in our earlier benchmark (Vitay
et al., 2015), the Auryn simulator performs best in this setup,
which might be due to the vectorized evaluation of the neural
equations. While the scalability of NEST and Auryn is almost
linear, the scalability of ANNarchy is limited mainly because
of two reasons: 1) only the update of the neural equations
is parallelized with OpenMP, synaptic transmission being in-
efficiently parallelized when using arrays (NEST uses object-
oriented representations of synapses) and 2) with increasing
number of threads, inter-CPU communication for sharing the
neural and synaptic variables will increase.

1www.github.com/hdinkelbach/codes ccn 2019

Figure 1: Simulation time (logarithmic scale) for the COBA
benchmark as a function of the number of threads.

GPU implementations typically perform very well for large
arrays and high computational load. While this can be easily
ensured for the update of neural equations, the opposite ap-
plies for the event-driven transmission as only a few neurons
are active in each time step. Consequently, the overhead for
launching computation kernels on the device or data transfers
from or to the device can be a strong performance limiter. The
investigated network is rather small and relatively low active
with an average activity of approximately 20 Hz, leading to a
lower performance on GPUs, which is in line with findings by
Yavuz et al. (2016) or Stimberg et al. (2018).

Linear rate-coded benchmark

Fig. 2 shows the single-threaded computational time in sec-
onds as a function of the number of neurons using NEST
(blue line), ANNarchy CPU (orange line) and ANNarchy GPU
(brown line). The network was run for 100 ms of simulated
biological time. NEST was used without activated waveform-
relaxation technique to be comparable to ANNarchy. NEST
and ANNarchy implementations using a single thread shows
a similar scaling behavior depending on the network size. The
GPU implementation shows a lower increase for small net-
works, what is an indicator for a high transfer overhead, the
computational kernels being bound to the memory bandwidth
rather the computation itself. This is most likely a conse-
quence of uncoalesced memory access patterns due to the
small number of connections per neuron, as we already pre-
viously observed (Dinkelbach, Vitay, Beuth, & Hamker, 2012).

We investigated also the scalability of the parallel imple-
mentations of ANNarchy and NEST using openMP. The re-
sults are shown in Fig. 3. For this benchmark, we selected
the 4000 neurons configuration and tested the performance
using 1 up to 12 threads. We observe a similar situation as
in the COBA benchmark: NEST (blue) achieves a nearly lin-

527



Figure 2: Simulation time (logarithmic scale) for the linear rate-
coded benchmark as a function of network size. We compare
NEST using a single thread (blue) and ANNarchy using either
a single thread (orange) or single GPU (brown).

ear speedup while the speedup of ANNarchy (orange) scales
sub-linear from 4 threads on. This might be due to false shar-
ing issues in the openMP parallelization. As for the spiking
networks, we assume that the inter-CPU communication for
the shared arrays is a performance limiter in comparison to
the object-oriented implementation of NEST. A second pos-
sible factor is that the random number generation is not par-
allelized in ANNarchy. For the investigated setup, ANNarchy
remains faster than NEST for 12 threads, but one can expect
that NEST will later outperform ANNarchy using more threads
due to the better scalability of NEST.

Discussion
ANNarchy allows an easy definition of rate-coded and spiking
models via an equation based interface to allow simulation on
multi-core CPUs and GPUs. We presented a comparison of
two benchmark-models using different state-of-the-art simu-
lators. For spiking neural models, NEST and Auryn achieve
a good scalability and clearly prove their suitability for shared
memory systems. While ANNarchy achieves a good perfor-
mance for small number of threads, the scalability is limited
for higher numbers. This opens space for improvement espe-
cially on multi-core systems.

The differences obtained by the different simulators can be
explained by two main factors: the evaluation of neural up-
dates and the synaptic transmission. When the neural vari-
ables are stored in continuous arrays, their state updates can
be vectorized, leading to an improved performance factor in
the currently available multi-core CPUs. However, these ar-
rays are shared among multiple cores or even CPUs, what
potentially limits the possible speedup. Comparatively, object-
oriented approaches as in NEST cannot benefit directly from
vectorization but the objects are handled individually can re-

Figure 3: Strong scaling experiment using a linear rate-coded
network with 4000 neurons for NEST and ANNarchy.

duce the inter-core/-CPU communication. A similar situation
can be observed for synaptic transmission in combination with
sparse connectivity. If pre- or post-synaptic neurons of adja-
cent synapses are not close to each other, there is a high
probability that array-based structures will load more data
than needed. Which then, in case of multiple threads, leads
to an increased inter-core/-CPU communication. In contrast
to object-oriented neurons where only the data of the corre-
sponding neuron is loaded. We discussed this effect in our
earlier work for synaptic transmission in rate-coded networks
(Dinkelbach et al., 2012).

Another key factor concerns the data structures used for
synaptic transmission. While in rate-coded networks it is
straightforward to organize the connectivity matrices with one
row per post-synaptic neuron (each weighted sum of inputs
only needs to access the corresponding row, where weights
are stored continuously in memory), spiking networks can
be also implemented using one row per pre-synaptic neuron:
spikes are sent to the efferent neurons. The choice of this
structure can influence the performance as demonstrated by
Stimberg et al. (2018).

ANNarchy was originally designed as a rate-coded simula-
tor which was then extended to spiking networks, while NEST
went the other way. We draw the same conclusion as Hahne
et al. (2017): the two paradigms, rate-coded and spiking, re-
quire different techniques for communication and computa-
tion. This makes the implementation within a unified simu-
lation environment a challenging task, where code generation
might prove very useful.

528



Acknowledgments
This work was supported by Deutsche Forschungsgemein-
schaft (DFG) in the projects ”Auto-tuning for neural simula-
tions on different parallel hardware” (DFG HA2630/9-1) and
”Computational Connectomics” (DFG HA2630/11-1).

References
Blundell, I., Brette, R., Cleland, T. A., Close, T. G., Coca, D.,

Davison, A. P., . . . Eppler, J. M. (2018). Code Genera-
tion in Computational Neuroscience: A Review of Tools
and Techniques. Frontiers in Neuroinformatics, 12. doi:
10.3389/fninf.2018.00068

Brette, R. (2015). Philosophy of the Spike: Rate-Based
vs. Spike-Based Theories of the Brain. Frontiers in
Systems Neuroscience, 9, 1–14. doi: 10.3389/fn-
sys.2015.00151

Brette, R., & Goodman, D. F. M. (2012). Simulating
spiking neural networks on GPU. Network: Com-
putation in Neural Systems, 23(4), 167–182. doi:
10.3109/0954898X.2012.730170

Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman,
D., Bower, J. M., . . . Destexhe, A. (2007). Simula-
tion of networks of spiking neurons: A review of tools
and strategies. Journal of Computational Neuroscience,
23(3), 349–398. doi: 10.1007/s10827-007-0038-6

Dinkelbach, H. Ü., Vitay, J., Beuth, F., & Hamker, F. H.
(2012). Comparison of GPU-and CPU-implementations
of mean-firing rate neural networks on parallel hardware.
Network: Computation in Neural Systems, 23(4), 212–
236. doi: 10.3109/0954898X.2012.739292

Gewaltig, M.-O., & Diesmann, M. (2007). Nest (neural simu-
lation tool). Scholarpedia, 2(4), 1430.

Hahne, J., Dahmen, D., Schuecker, J., Frommer, A., Bolten,
M., Helias, M., & Diesmann, M. (2017). Integration
of Continuous-Time Dynamics in a Spiking Neural Net-
work Simulator. Frontiers in Neuroinformatics, 11. doi:
10.3389/fninf.2017.00034

Stimberg, M., Goodman, D. F. M., Benichoux, V., & Brette, R.
(2014). Equation-oriented specification of neural models
for simulations. Frontiers in Neuroinformatics, 8, 6. doi:
10.3389/fninf.2014.00006

Stimberg, M., Goodman, D. F. M., & Nowotny, T. (2018).
Brian2GeNN: a system for accelerating a large vari-
ety of spiking neural networks with graphics hardware.
bioRxiv . doi: https://doi.org/10.1101/448050

Verduzco-Flores, S., & De Schutter, E. (2019). Draculab: A
Python Simulator for Firing Rate Neural Networks With
Delayed Adaptive Connections. Frontiers in Neuroinfor-
matics, 13, 1–15. doi: 10.3389/fninf.2019.00018

Vitay, J., Dinkelbach, H. Ü., & Hamker, F. H. (2015). ANNar-
chy: a code generation approach to neural simulations
on parallel hardware. Frontiers in Neuroinformatics, 9.
doi: 10.3389/fninf.2015.00019

Vogels, T. P., & Abbott, L. F. (2005). Signal Propagation and
Logic Gating in Networks of Integrate-and-Fire Neurons.

Journal of Neuroscience, 25(46), 10786–10795. doi:
10.1523/JNEUROSCI.3508-05.2005

Yavuz, E., Turner, J., & Nowotny, T. (2016). GeNN: a code
generation framework for accelerated brain simulations.
Scientific reports, 6, 18854. doi: 10.1038/srep18854

Zenke, F., & Gerstner, W. (2014). Limits to high-speed
simulations of spiking neural networks using general-
purpose computers. Frontiers in Neuroinformatics, 8.
doi: 10.3389/fninf.2014.00076

529


