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Abstract

A common problem in computational neuroscience is the
comparison of competing models in the light of observed
data. Bayesian model comparison provides a statistically
sound framework for this comparison based on the ev-
idence each model provides for the data. In practice,
however, models are often defined through complex sim-
ulators so that methods relying on likelihood functions
are not applicable. Previous approaches in the field of
Approximate Bayesian Computation (ABC) rely on rejec-
tion sampling to circumvent the likelihood, but are typ-
ically computationally inefficient. We propose an effi-
cient method to perform Bayesian model comparison for
simulation-based models. Using recent advances in pos-
terior density estimation, we train a mixture-density net-
work to map features of the observed data to the pa-
rameters of the posterior over models. We show that
the method performs accurately on two tractable example
problems, and present an application to a use case sce-
nario from computational neuroscience — the comparison
of ion channel models.
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putation; density estimation

Introduction

Complex simulations play an important role in cognitive sci-
ence, computational neuroscience, and other fields, and
are used to develop and evaluate hypotheses for mecha-
nisms underlying the processes under investigation (Gerstner,
Sprekeler, & Deco, 2012). For hypothesis-building, we often
want to decide which of several candidate models provides
the best explanation of empirical data, i.e. we want to perform
model comparison. However, in practice, complex mechanis-
tic models are often defined implicitly through stochastic sim-
ulators, e.g., a set of differential equations to be integrated.

Bayesian model comparison offers a statistically sound
framework for comparing competing hypotheses (Dienes,
2011; Bishop, 2006). Given candidate models m; with pa-
rameters 0 and observed data x, the posterior probability of a
model is

p(milx,) o< p(m;) p(x|m;) = P(mi)/l)(xo\evmi) p(6|m;) de.

where p(x,|8,m;) denotes the likelihood of the data given the
model m; and parameters 0, and the integral is called marginal
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likelihood of the model (model evidence). In the context of
complex simulator models, however, it is often impossible to
compute the likelihood function p(x,|0,m), implying that con-
ventional approaches to Bayesian model comparison cannot
be applied.

Classical approaches to solving this problem originate
in the field of Approximate Bayesian Computation (ABC,
Sunnéker et al., 2013) and rely on rejection sampling (Rubin
et al., 1984). Basic rejection sampling was extended to a se-
quential Monte Carlo approach (ABC SMC) by Toni, Welch,
Strelkowa, Ipsen, and Stumpf (2009), improving the sampling
efficiency using importance weights. Overall, however, these
approaches do not scale to high-dimensional applications and
often rely on the choice of summary statistics, distance func-
tions and acceptance thresholds.

Recently, several studies used conditional density estima-
tion to infer the parameters of a simulation-based model
(Papamakarios & Murray, 2016; Lueckmann et al., 2017;
Greenberg, Nonnenmacher, & Macke, 2019). In contrast to
rejection sampling approaches, these methods approximate
the posterior over the parameters of a model in parametrized
form, avoiding the choice of distance functions and providing
improved simulation efficiency. Furthermore, these improve
sampling efficiency by drawing new samples from adaptively
chosen proposal distributions, giving rise to the name of se-
guential neural posterior estimation (SNPE).

However, previous studies concentrated on neural density
estimation for posterior inference, and did not provide method-
ology for model comparison. Here, we investigate how neural
density estimation can be used for model comparison, in or-
der to provide methodology for comparing complex simulation-
based models in neuroscience and beyond.

Model comparison via neural density
estimation

The goal of neural posterior estimation is to learn a parametric
approximation to the exact posterior, using simulations from
the model. SNPE approaches originate in regression correc-
tion approaches to ABC (Beaumont, Zhang, & Balding, 2002),
which proposed to learn properties of the posterior, such as its
mean and variance, directly using a regression from simulated
parameters to generated data. More recently, this idea was
developed further using mixture-density networks (MDNs) to
estimate the entire conditional density of the parameters given
the observed data p(6|x,) (Papamakarios & Murray, 2016;
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Lueckmann et al., 2017). Greenberg et al. (2019) use SNPE
with flow-based conditional density estimators, and their meth-
ods allows for full flexibility in adaptively sampling simulations.

Here, we extend the idea of learning posterior over model
parameters of a single model, to learning the posterior over
multiple competing models to perform model comparison: Our
goal is to approximate the posterior probability of each model
i, given the observed data, i.e. p(m;|x,). Instead of doing
rejection sampling, approximating the posterior probability (or
the evidence) with a selection of sampled parameters, our ap-
proach follows the rationale of posterior density estimation as
outlined in Figure 1:

Simulation

Density estimation
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Figure 1: Schematic overview of the approach: In the sim-
ulation phase, training data are generated from the simulator
model. The resulting training dataset D is used in the den-
sity estimation phase to train a neural network which approx-
imates the posterior over models. In practice, one often re-
duces the data x to a set of summary statistics s(x).

First, we choose priors over models and parameters. Then
we repeatedly sample from the priors to generate a large
amount of simulated data D = {(x,,m,)}"_, (Figure 1, Sim-
ulation). The simulated data are used to train a density es-
timation neural network gy (m|x) with parameters y to map
from data to the model index, (Figure 1, Density estimation).
Finally, the density estimator is used to predict the posterior
over models given the empirically observed data, p(m;|x,).

Starting from the joint data generating distribution
p(m,8,x) = p(6]m,x)p(m|x)p(x) Q)

one can derive a loss function for neural network training that
minimizes the Kullback-Leibler divergence between the true

posterior p(m|x) and the approximating parametrized poste-
rior g(m|x). This results in the objective of maximizing the
expected log-probability of the model.

The derivation involves both the posterior approximation for
the models and for the parameters, thus, in principle the net-
work can be trained to predict both the parameters 6, and
the generating model m,,, effectively doing model comparison
and inference simultaneously. Here, we are interested in the
discrete posterior over models only, so that the objective cor-
responds to the cross-entropy loss

L) = (log ay(ml)) @
N ||
Z Z mn log q\ll n"xn) (3)
Experiments

We perform two experiments to demonstrate and test the ac-
curacy of the approach, and one experiment to showcase the
application in a computational neuroscience setting. In all nu-
merical experiments, we used a two-layer neural network gy
with hyperbolic tangent activation functions; and used ADAM
(Kingma & Ba, 2014) to optimize the loss (eq. 3).

1. Gaussian toy example

We first provide an intuitive toy example — the problem of de-
ciding between three Gaussian models with different means,
given only a single data point as observation. Here, the train-
ing data consist of samples (m,,x,) from all three models,
each with different Gaussian priors p(u|m;) on the mean pa-
rameter u (Figure 2, top). After training with 50000 data points,
the posterior probability of each model predicted for the whole
range of observed test data points x, closely matches the an-
alytic posterior probability (Fig. 2, bottom).
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Figure 2: Gaussian toy example: Simulated training dataset
(top) and predicted posterior probabilities of the three models
(bottom).
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2. Spike count models

Second, we present a model comparison problem from com-
putational neuroscience for which the exact posteriors can
be calculated: the comparison of the Poisson model vs. the
negative-binomial model for spike count data. It relates to the
question of whether spike counts generally have equal mean
and variance (Poisson model) or whether the variance ex-
ceeds the mean, i.e., the counts are overdispersed (negative-
binomial model, Taouali, Benvenuti, Wallisch, Chavane, & Per-
rinet, 2015). Thus, a statistical model comparison procedure
is expected to favour the overdispersed model whenever the
variance is sufficiently big.
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Figure 3: Model comparison between overdispersed and
Poisson spike count models: Exact posterior probabilities
(filled circles, orange edges) on top of predicted posterior
probability for the Poisson model (background), same color
code.

In this case, the training data consist of the mean and the
variance of simulated spike counts from both models. We
use a uniform prior p(m) over the two models and Gamma
priors over the parameters of the Poisson and the negative-
binomial model to generate 50000 training data points and
300 test data points. To illustrate the performance, we
compute the predicted posterior probability of the Poisson
model gy (mpor|s(x)) for a fine grid of means and variance
(Fig. 3, background) and plot the exact posterior probabilities
p(mpoj|x) of the test set on top using the same color code
(Fig. 3, orange circles, foreground). The close match in color
indicates accurate performance.

3. lon channel models

Finally, we present a use case scenario from computational
neuroscience for which no ground truth posterior is available:
comparison of two ion channel models on the basis of ob-
served current traces. Both ion channels models are taken
from Pospischil et al. (2008), selected based on the ion chan-
nel genealogy (Podlaski et al., 2017). The output of the
models consists in current traces in response to stereotypical
voltage-clamp protocols applied to the membrane (Figure 4);
summary statistics were calculated using PCA, as described
in (Podlaski et al., 2017).

In this example, the priors over the two models and the pri-
ors over the model parameters are uniform. We train gy, with
100000 training data points to predict the probability of each

580

<

6 E

C

C

©

c

(9
activatién ' inactivétion 'deactivat'ion

[a1]

© §

C

C

©

e

© -~

0 500 0 1000 0 500

time [ms] time [ms] time [ms]

Figure 4: Comparing models of ion channels: Current
traces of channel A (top) and channel B (bottom) in response
to three voltage-clamp protocols.

channel model given observed summary statistics on 300 test
data points. Because no ground truth posterior is available, no
direct evaluation is possible here. However, we observe that
qy reliably assigns high posterior probability to the correct un-
derlying channel model.

Evaluation

For a comparison to state-of-the-art model comparison meth-
ods, we apply ABC SMC (Toni et al., 2009) as provided in
the pyABC toolbox (Klinger, Rickert, & Hasenauer, 2017) to
our example models and compare it with the neural density
estimation (NDE) method presented here. We base the com-
parison on the same number of training simulations. For the
tractable examples, the absolute difference between predicted
and exact posterior serves as an evaluation metric, while the
performance on the ion channel example is assessed us-
ing the cross-entropy loss with respect to the true underlying
model.
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Figure 5: Comparison of neural density estimation (NDE)
and sequential Monte Carlo (ABC SMC) methods on the
presented example problems. Third column shows cross en-
tropy loss, as ground-truth posteriors are not available for the
ion-channel model.



Given the same number of simulations and based on a test
set with 300 different observed data, NDE is competitive with
ABC SMC on the analytically tractable examples. The com-
parison based on cross-entropy loss for the ion channel ex-
ample shows that NDE clearly outperforms ABC SMC on this
example.

Conclusions

Simulation-based models with intractable likelihoods play a
central role in neuroscience and cognitive science (Palestro
et al., 2018): recurrently connected spiking neurons
(Ladenbauer, McKenzie, English, Hagens, & Ostojic, 2019),
and models of decision making based on nonlinear diffusion
mechanisms (Ratcliff & McKoon, 2008; Park, Lueckmann, von
Kriegstein, Bitzer, & Kiebel, 2016) are examples of simulation-
based models for which likelihoods are intractable or chal-
lenging to compute. The goal of this work is to provide sta-
tistical methods for performing Bayesian model comparison
even on such complex mechanistic models. We show how
neural density estimation for simulation-based inference can
be extended to the task of Bayesian model comparison, and
demonstrate its competitive performance on three example
problems.

Our goal is to provide methods which will enable scien-
tists to apply Bayesian model comparison to simulation-based
models in computational neuroscience, cognitive science and
beyond. Although we concentrated on training a neural net-
work to do model comparison, one can perform both inference
and model comparison simultaneously, which opens up new
research possibilities in machine learning and neuroscience.
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