
Forward Models in the Cerebellum using Reservoirs and Perturbation Learning

Katharina Schmid (katharina.schmid@s2017.tu-chemnitz.de)

Julien Vitay (julien.vitay@informatik.tu-chemnitz.de)

Fred H. Hamker (fred.hamker@informatik.tu-chemnitz.de)
Chemnitz University of Technology - Artificial Intelligence Lab, Straße der Nationen 62

Chemnitz 09107, Germany

Abstract
The cerebellum is thought to be able to learn for-
ward models, which allow to predict the sensory conse-
quences of planned movements and adapt behavior ac-
cordingly. Although classically considered as a feedfor-
ward structure learning in a supervised manner, recent
proposals highlighted the importance of the internal re-
current connectivity of the cerebellum to produce rich dy-
namics, as well as the importance of reinforcement-like
mechanisms for its plasticity. Based on these models,
we propose a neuro-computational model of the cerebel-
lum using an inhibitory reservoir architecture and biolog-
ically plausible learning mechanisms based on perturba-
tion learning. The model is trained to predict the position
of a simple robotic arm after ballistic movements. Under-
standing how the cerebellum is able to learn forward mod-
els might allow elucidating the biological basis of model-
based reinforcement learning.

Keywords: Computational Neuroscience; Reservoir comput-
ing; Cerebellum; Forward models; Perturbation learning.

Introduction
Recent models have described the recurrent connectivity of
the cerebellum in terms of dynamical reservoirs (Yamazaki &
Tanaka, 2007; Rössert, Dean, & Porrill, 2015). Granule cells
and Golgi cells indeed form a recurrent inhibitory network, ac-
tively storing information about the history of recent cortical
inputs. This information is encoded in the changing activity of
Granule cells and forwarded via the parallel fibres to the Purk-
inje cells and ultimately to output neurons in the deep cerebel-
lar nuclei. As in reservoir computing (Jaeger, 2001; Maass,
Natschläger, & Markram, 2002), the connectivity of the reser-
voir is left unchanged and learning takes place by adapting
the connections between the reservoir and the read-out neu-
rons. This is in agreement with classical theories of cerebellar
learning, which suggest that synaptic plasticity between par-
allel fibres and Purkinje cells is the main mechanism of motor
learning in the cerebellum (e.g. Albus, 1971; Ito, 2000).

The classical Marr-Albus-Ito hypothesis is based on su-
pervised learning and long-term depression at parallel fibre-
Purkinje cell synapses (Albus, 1971; Ito, 2000). More re-
cently, Bouvier et al. (2018) proposed an alternative frame-
work of cerebellar learning which borrows from reinforcement
learning and relies on both long-term depression and poten-
tiation at the synapses between parallel fibres and Purkinje

cells. In this framework, climbing fibres, which reach Purkinje
cells from the inferior olive, do not just provide teaching signals
but are also the source of random perturbations. These per-
turbations are used to vary the cerebellar output and explore
different responses by trial and error. A binary teaching signal
indicates whether the perturbations improved or worsened the
cerebellar response, adapting the synapses accordingly.

We propose a neuro-computational model combining the
reservoir model of cerebellar interneurons of Rössert et al.
(2015) with the perturbation learning rule for Purkinje cells
proposed by Bouvier et al. (2018), in order to learn a forward
model of an effector. We focus here on a simple 2-joint planar
arm to demonstrate the capacity of the network to learn using
biologically plausible learning rules.

Methods
The task of the forward model is to predict the next posi-
tion of an end effector (xnext,ynext) given its previous position
(xprev,yprev) and a change in joint angles ∆θ0, ∆θ1 represent-
ing the motor command. The positions (xprev,yprev) are ob-
tained from the joint angles (θ0,θ1) (initially taken randomly
in [0,π]) with a simple mechanical model of the arm (both
segments have a length of 0.5). The motor commands ∆θ0
and ∆θ1 are sampled from U(− π

18 ,
π

18) to obtain (xnext,ynext),
producing large enough movements to make the prediction
problem non-linear.

Network Architecture

Pons GC

GoC PC

DN IO

parallel fibres

climbing fibres

mossy

fibres

Figure 1: Network architecture: GC - granule cells, GoC -
Golgi cells, PC - Purkinje cells, DN - dentate nucleus, IO -
inferior olive. Edges ending with an arrow head indicate ex-
citatory connections, edges ending in a dot indicate inhibitory
connections. Dashed lines are plastic.

The architecture of the model is depicted in Figure 1. The

619

This work is licensed under the Creative Commons Attribution 3.0 Unported License.

To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0

two population model by Rössert et al. (2015) serves as the
reservoir, consisting of Nz = 1000 granule cells (GC) and
Ng = 100 Golgi cells (GoC). The convergence of granule to
Golgi cells is limited to c = 10 and the variability of excita-
tory weights is increased to vu = 4 to improve performance
(please refer to (Rössert et al., 2015) for the meaning of these
parameters). The baseline of mossy-fibre activity I0i is chosen
randomly from N (1.2,0.1). The mean of excitatory weights
is set to u = 50 and the mean of inhibitory weights is set to
w = 0.05/τw to keep the network dynamics close to the edge
of chaos. Contrary to Rössert et al. (2015), who trained their
model on a single input x, our task uses four different input
signals (xprev,yprev,∆θ0,∆θ1). Each of the granule and Golgi
cells is randomly assigned a single input. Figure 2 shows the
response of 20 granule cells to a random input signal pre-
sented for 20 ms. All other reservoir parameters are identical
to Rössert et al. (2015).

0 20 40 60
Time (ms)

0

2

4

6

8

GC
 fi

rin
g

ra
te

Figure 2: Activity of 20 randomly chosen granule cells for a
random input sample. The dashed and dotted lines represent
the end of the input presentation and the beginning of the re-
sponse period.

The reservoir is read out by additional feedforward layers
consisting of Np = 20 Purkinje cells (PC), Nd = 2 projection
neurons in the dentate nucleus (DN) and Ni = 2 neurons in
the inferior olive (IO). The firing rate pi(t) of a PC is defined
by:

pi(t) =

[
Nz

∑
j

Di j mi j

t

∑
s=1

exp
(
− t − s

τm

)
z j(s−1)

+
Ni

∑
j

Hi j wIO

t

∑
s=1

exp
(
− t − s

τIO

)
l j(s−1)

]+ (1)

D and H are binary matrices describing the connectivity
between the granule cells of rate z j(t), respectively IO cells of
rate l j(t), and the Purkinje cells. The PC’s firing rate itself is
not dynamic, but each synapse integrates exponentially its in-
puts, leading to a similar effect. The connectivity is chosen so
that 10 Purkinje cells project to the same DN neuron and re-
ceive input from the same IO neuron. The plastic weights con-
necting GCs and PCs are initialized with m= [N (0.1,0.05)]+.
The climbing fibre weights wIO are all set to 1.0. τm and τIO

are the time constants of the different synapses and are both
set to 1 ms. l j refers to the firing rate of the j-th inferior olive
neuron and represents the perturbations due to climbing fibre
input.

How Purkinje cells modulate cerebellar output is defined by
the following equation for the firing rate ni(t) of the Nd DN
neurons:

ni(t) =

[
Ii(t)−

Np

∑
j

Gi j wPC

t

∑
s=1

exp
(
− t − s

τPC

)
p j(s−1)

]+
(2)

Like GC and GoC, DN neurons are randomly connected
to a single mossy fibre input Ii(t), with the push-pull mech-
anism described in (Rössert et al., 2015). G is a bi-
nary matrix and represents the connectivity between PC
and DN neurons, as described in the previous paragraph.
The corresponding connection weights wPC are fixed and
set to 0.1. The time constant for synaptic integration is
τPC = 1 ms. As the firing rate is restricted to be posi-
tive, xnext and ynext are translated and scaled to fit in the
range [I0i

4 , 3I0i
4]. The complete neural network was imple-

mented using ANNarchy (Vitay, Dinkelbach, & Hamker, 2015),
a neural simulator for distributed rate-coded and spiking net-
works, with a step size of 1 ms. The code is available at
github.com/kimschmi/CerebellumForwardModel.

Perturbation-based Learning Rule
As in Bouvier et al. (2018), each synapse between the i-th GC
and the j-th PC maintains an eligibility trace ei j(t) according
to:

ei j(t) = ei j(t −1)+

(
t

∑
s=1

exp
(
− t − s

τm

)
zi(s−1)

)

×

(
t

∑
s=1

exp
(
− t − s

τIO

)
lk(s−1)

) (3)

The eligibility trace integrates the product of the presynaptic
activity and the postsynaptic perturbation over time. As a con-
sequence, only those synapses whose presynaptic neurons
were active when postsynaptic perturbations occurred will be
updated. In the current model, the eligibility trace does not
decay over time and relies on the precise timing of perturba-
tions. It is hypothesized that perturbations only occur during
the response period, when the network’s response to the input
is computed. An alternative would be to consider a decaying
eligibility trace, which would however limit the response period
to a short time before the error feedback.

As the information about the network error becomes avail-
able, the weight updates are computed by:

∆mi j =−ηcei j (4)

η = 2e−4 is the learning rate, ei j the eligibility trace and c
signals whether the error for the current input-output pair im-
proved or got worse relative to previous trials. This binary

620

signal is given by:

c = sign(εµ − Iµ) (5)

The current error εµ for an input µ is the Euclidean distance
between the network output and the target value. The average
of recent errors for a specific input pattern Iµ is estimated by
a linear combination of the GC outputs Iµ = ∑i vi zi(t), where
zi(t) is the firing rate of the i-th GC and the coefficient vi is
updated at the end of each trial according to:

∆vi = η c
75

∑
t=70

zi(t) (6)

The firing rate of the granule cells is averaged over the re-
sponse period [70,75] (see next section) and η = 2e−4 is the
learning rate. The absolute value of both weight updates ∆m
and ∆v is not allowed to exceed 0.5 to ensure stability.

In the original version by Bouvier et al. (2018), the synaptic
weights between parallel fibres and Purkinje cells are not re-
stricted to be positive, which they explain by the fact that the
GC firing rate may be relayed to Purkinje cells via inhibitory
interneurons. During learning, synaptic weights can therefore
change their sign, which could correspond to the creation of
new inhibitory synapses and the pruning of existing excita-
tory synapses or vice versa. This form of structural plasticity
cannot be explained by current observations of long-term de-
pression and long-term potentiation at these synapses. We
restrict here the weights to positive values only.

Training Procedure

The network is presented with the four input signals xprev,
yprev, ∆θ0 and ∆θ1 for 20 ms. After a delay of 50 ms, the
network response is read out. During this response period
of 5 ms, the Purkinje cells receive random perturbations that
vary the cerebellar output. Perturbations are generated ran-
domly and independently by each IO neuron with a mean rate
of 50 Hz (the probability that a DN neuron receives a pertur-
bation during the response period is 0.25) and an amplitude
of 0.1. Finally, the network response is evaluated, compared
with the desired positions, and the parallel fibre-Purkinje cell
weights are updated. Between the presentation of different in-
put samples, the firing rate of granule cells and Golgi cells and
the results of synaptic integration are reset to values chosen
randomly from U(0.0,0.1). The network is trained on a set of
5,000 random samples for 2,000 epochs and its performance
is evaluated on a test set of another 5,000 random samples.

Results
Figure 3 shows that the mean remaining error between the
prediction and the arm’s target position decreases rapidly dur-
ing learning. Figure 4 shows the time course of the activity
of the two projection neurons when the network is presented
with a random test sample after learning.

Figure 5 illustrates how the corresponding predicted arm
position evolves during learning for that particular movement.

0 500 1000 1500 2000
Epoch

0.0

0.5

1.0

1.5

M
SE

Figure 3: Development of the prediction error during perturba-
tion learning with positivity constraint.

0 20 40 60
Time (ms)

0.0

0.5

1.0

1.5

2.0

DN
 fi

rin
g

ra
te

DN 0
DN 1
target 0
target 1

Figure 4: Activity of DN projection neurons for a random input
sample. Their target value is represented by horizontal lines.

The initial prediction is completely wrong, as the weights are
initialized randomly, reaches quite quickly a mean target po-
sition around (0,0.5) and finally converges quite slowly to
the target value (note the remaining error). The same pat-
tern can be observed for most learned movements, as can
be seen in Figure 6, where the variance of the distance be-
tween this mean position and the predicted positions first de-
creases sharply, before increasing again. Eventually, learning
converges to a mean Euclidean distance of 0.079 over both
the training and test sets. Removing the positivity constraint
on the weights between the parallel fibres and the PC slightly
reduces the mean error to 0.069 on both sets.

Figure 7 visualizes the distribution of the network predic-
tion errors in the arm’s workspace (test set). The accuracy of
the predictions is generally better around the mean position
(0.0,0.5) than in extreme arm positions, indicating the non-
linearity of the learning problem.

Discussion
The proposed model combines the recurrent dynamics of the
GC-GoC excitatory-inhibitory network proposed by Rössert et
al. (2015) with the perturbation-based learning rule for paral-
lel fibres-PC synapses proposed by Bouvier et al. (2018). The
model is able to learn a simple non-linear prediction task on a

621

1 0 1
x

1.0

0.5

0.0

0.5

1.0
y

0

500

1000

1500

Ep
oc

h

Figure 5: Development of the predicted arm position for a par-
ticular movement during training. The black arm indicates the
initial position, the red arm indicates the arm position after
the movement. The colored dots show the predicted positions
during learning.

0 500 1000 1500 2000
Epoch

0.02

0.04

0.06

Va
r(d

)

Figure 6: Evolution of the variance of the distance d between
the mean position of the arm and the predictions during train-
ing, computed over 500 random training samples. This indi-
cates that the network first tries to make all predictions close to
the mean position and only later learns individual predictions.

2D simulated arm, although still imprecisely. Contrary to the
classical supervised approach requiring complete error sig-
nals, the model learns from a binary teaching signal indicating
whether the prediction error has improved compared to base-
line performance. This allows to learn forward models with
a cerebellar model: the IO mainly receives low-level motor
and proprioceptive information, so it can only drive supervised
learning of inverse models (motor adaptation). For supervised
forward models, the IO would need to compare cortical sen-
sory representations in order to compute the teaching signal,
what seems to be a very challenging task for such a small nu-
cleus. By relying on a much simpler reinforcement-like teach-
ing signal, the proposed model could learn forward models
even if the predicted sensory space is high dimensional.

Many aspects of the proposed model need to be further
studied, such as its precision, its use for high dimensional sen-
sory spaces or longer prediction delays. An efficient and bi-

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

0.05

0.10

0.15

0.20

0.25

0.30

Eu
cli

de
an

 d
ist

an
ce

Figure 7: Distribution of the prediction error in the arm’s
workspace. The color indicates the Euclidean distance be-
tween the target position and the network’s response after
training.

ologically realistic model of the cerebellum for the acquisition
of forward sensory models would be an important step for the
study of many cognitive functions, including model-based re-
inforcement learning, planning, body awareness or the sense
of agency. The integration of this model into broader neu-
ral architectures involving the cerebral cortex and the basal
ganglia might allow to both understand better the brain at the
systems-level and create adaptive cognitive agents.

Acknowledgments
This work was partially supported by the DFG priority program
”The Active Self” HA2630/12-1.

References
Albus, J. S. (1971). A theory of cerebellar function. Mathe-

matical Biosciences, 10(1-2), 25–61.
Bouvier, G., Aljadeff, J., Clopath, C., Bimbard, C., Ranft, J.,

Blot, A., . . . Barbour, B. (2018). Cerebellar learning using
perturbations. eLife, 7 , e31599.

Ito, M. (2000). Mechanisms of motor learning in the cerebel-
lum. Brain research, 886(1-2), 237–245.

Jaeger, H. (2001). The ”echo state” approach to analysing
and training recurrent neural networks (Tech. Rep.).

Maass, W., Natschläger, T., & Markram, H. (2002). Real-
time computing without stable states: A new framework for
neural computation based on perturbations. Neural compu-
tation, 14(11), 2531–2560.

Rössert, C., Dean, P., & Porrill, J. (2015). At the edge of
chaos: how cerebellar granular layer network dynamics can
provide the basis for temporal filters. PLoS computational
biology , 11(10), e1004515.

Vitay, J., Dinkelbach, H., & Hamker, F. (2015). ANNarchy: a
code generation approach to neural simulations on parallel
hardware. Frontiers in Neuroinformatics, 9, 19.

Yamazaki, T., & Tanaka, S. (2007). The cerebellum as a liquid
state machine. Neural Networks, 20(3), 290 - 297.

622

