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Abstract: 
A crucial methodological question for cognitive neuroscience 
is the question of what constitutes evidence of neural 
representation. A number of critiques over the last decade 
have challenged the view that correlation alone, as 
measured by neural decoding, is sufficient to establish 
representation. In response to such critiques, correlation is 
often augmented by a behavioral measure, showing that the 
decoding accuracy of a classifier and some behavioral 
performance measure are themselves correlated. I argue 
that correlation and behavioral causation together are 
nevertheless still insufficient for establishing representation. 
Inferring the existence of a neural representation on the 
basis of correlation and behavior alone is liable to both false 
positives and false negatives. Reflection on one common 
theory of representation (functional homomorphism theory, 
proposed by King and Gallistel 2010) elucidates why 
correlation + behavior is insufficient and suggests more 
direct sources of evidence. I present this theory and explain 
its implications for the question of empirical evidence of 
representation. Along the way I draw out some of the 
connections between the functional homomorphism theory of 
representation and predictive theories of perception. 
Keywords: Representation, Neural Codes, Intuitive 
Physics, Functional Homomorphisms, Neural Decoding.  

 
Correlation is not representation: 
 
One of the core aims of cognitive neuroscience is to 
uncover the representations that allow the brain to 
process information about its environment. One 
natural way to do so is to show subjects a selection of 
stimuli and determine which neural responses carry 
information about the stimulus presented. This broad 
method encompasses both the localization studies of 
the early days of fMRI (Kanwisher, 2000) and more 
recent Multi-Voxel Pattern Analysis (Cox & Savoy, 
2003; Haynes, 2015). While these methods have 
proven enlightening, they are also subject to much 
legitimate criticism. In particular, many have pointed 
out that the correlations on which these methods are 
based are an imperfect guide to the representations 
the brain actually employs (Andersen, T. Oates, 2010; 
Brette, n.d.; Ritchie, Kaplan, & Klein, 2019; Todd, 
Nystrom, & Cohen, 2013). The central worry of these 
critiques is that correlations are cheap — any number 
of features of a stimulus might give rise to a differential 
response in select brain areas and allow for stimulus 
identity to be decoded with reasonable accuracy. 

 Worries about spurious correlations can sometimes 
be addressed by careful experimental controls, but 
running such controls is often labor intensive, requires 
strong priors on the part of the experimentalist viz. 
what confounds are likely, and become harder and 
harder as the representational contents under 
investigation become harder and harder to pull apart. 
These worries become critical when the 
representational contents under investigation are high 
level, or abstract, contents (as opposed to low level 
visual features such as edges or colors). This is 
because high level contents are likely to correlate with 
a number of low level visual features, not least those 
that are used by the visual system to infer high level 
contents.  
 
To take one recent example, the physical magnitude 
mass, if it is visually represented, is likely to correlate 
with a large number of low level features (including 
texture, volume, and shape), as well as less obvious 
combinations of these and other features. Factors 
such as the high number of low level correlates, the 
need for priors over which ones to check, and the 
difficulty of pulling apart high level contents from the 
low level contents that may be used to infer them, 
make diagnosing representations by way experimental 
controls fraught. Concerns such as these and others 
have motivated a discussion about alternative sources 
of evidence for neural representation. 
  
Correlation plus behavioral causation is not 
representation: 
  
The response to these worries has been to emphasize 
the need to establish that the correlations detected by 
methods such as decoding are also behaviorally 
relevant (Tong & Pratte, 2011). For a neural response 
to constitute a representation, then it must both 
correlate with some aspect of the environment and be 
causally efficacious in supplying the larger system (the 
brain) with that information. Defenders of this method 
might show, for example, that the trials on which 
BOLD response or decoding accuracy is greatest tend 
to be those on which performance is at its best (Ritchie 
et al., 2019). 
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A growing number of studies include behavioral criteria 
as well as decoding in diagnosing representations. 
This is a laudable step forward. Studies which show 
that decoding accuracy is related to behavioral 
performance on a trial-by-trial basis deliver much 
stronger evidence of representation than do studies 
which use correlation alone. The mantra of correlation 
+ (behavioral) causation is however, misleading, as 
diagnosing representations on this basis is liable to 
both false positives and false negatives.  
  
These risks come from the many causal links that 
mediate perception and decision. In particular, the risk 
of false positives will arise when subjects use 
information from alternative representations which 
correlate with the feature of interest. For example, if 
mass is not visually represented, subjects might still be 
able to perform well on a task that requires information 
about the masses of visual stimuli by reasoning about 
other features which are visually represented and 
which correlate with mass, for example, visual texture 
(say, rock-y or paper-y). On any given occasion, 
correlated visual features might be sufficient both for 
the subject to perform well on the behavioral task and 
for a classifier to decode object category, passing the 
above test for representation even when the feature of 
interest is not represented. 
  
There is a significant risk of false negatives as well. 
Here again the risk comes from the number of causal 
links between perceptual representation and a 
resulting decision, each of which provide opportunities 
for information present in perception to be lost en route 
to decisions. A feature which actually is represented in 
vision may fail to inform decisions for any number of 
reasons, including the subject’s choice of strategy 
(which information to use in their decision) or 
attentional biases (which information they tend to 
prioritize). Worse still is that some contents which are 
represented may by the visual system be in principle 
inaccessible to decision processes, making them 
permanently immune to behavioral measures. Visual 
representation of high level features involves a large 
number of computations with attendant intermediate 
representations. Diagnosing the algorithms vision uses 
in order to recover high level features may require 
deciding between hypotheses about alternative 
intermediate representations. But intermediate 
representations (such as pre-constancy 
representations of size and color, or representations of 
key geometrical features of faces) are unlikely to be 
directly available to behavior. As such, 
correspondence + behavioral causation methods will 
necessarily miss such representations. 
  

Better methods are needed in light of the risks of both 
false positives and false negatives when 
correspondence + behavioral causation is used to 
diagnose perceptual representation. A clearer 
understanding of what representations are will help to 
better assess both what counts as evidence of 
representation and when sufficient evidence has been 
gathered. In the next section I discuss one such theory 
of representation, the functional homomorphisms 
theory due to (King & Gallistel, 2010). I then discuss its 
application to the question of standards of evidence. 
  
Neural Representation: Functional Homomorphism 
Theory 
 
A common view in the philosophy of cognitive science 
holds that representation is defined by a functional 
homomorphism between brain states and features of 
the environment. I’ll first define this notion and then 
illustrate the concept using face perception as an 
instance of high level perceptual representation for 
which we have a good cognitive model.  
 
Briefly, a homomorphism is a mapping between the 
members of two groups, such that the structure of both 
groups is preserved under the mapping. That is, two 
structures are homomorphic if there exists some 
mapping f, such that f(x) * f(y) = f(x*y), where * in the 
first case denotes an operation on members of the first 
group, and in the second case denotes an operation 
on members of the second group.   
  
A functional homomorphism is a homomorphism 
between two groups such that the intra-group structure 
of both groups is either causal or constitutive, and the 
mapping between groups is causal.[1] Functional 
homomorphisms are interesting from the point of view 
of perception because they preserve probabilistic 
relationships among the represented features, a key 
idea for theories of perception that emphasize 
prediction or generation of the incoming stimulus 
(Hohwy, 2014; Yuille & Kersten, 2006). 
 
The intuitive idea behind functional homomorphism 
theory is that aspects of the environment are mapped 
by causal processes such as transduction or pattern 
recognition to recurring patterns of neural activation. 
These patterns stand in causal relations that mirror the 
relations between the aspects of the environment to 
which they are mapped.  
 
A recent generative model of face perception offers a 
quick illustration. Aspects of the environment such as 
the underlying geometry of a face, the lighting, and the 
orientation of the face collectively give rise to a 2D 
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image of the face in question. A model by (Yildirim, 
2015; Yildirim, Belledonne, Freiwald, & Tenenbaum, 
2018) capitalizes on this underlying generative 
process and uses representations of these features 
(lighting, facial geometry and orientation) in order to 
generate a predicted image of a given face under 
those conditions.  
 
On such a model, features of the environment such as 
lighting, facial geometry, or orientation can be inferred 
by way of their effects on a face image or directly 
observed (more realistically, inferred by another route). 
Similarly, a 2D projection of the face can be directly 
transduced or anticipated from the generating features 
(say in the case in which a known individual is turning 
towards us). This establishes a causal mapping 
between 2D face projection and 2D face projection 
image (by way of prediction or transduction) and 
between environmental features of facial geometry, 
orientation, and lighting and their representations (by 
way of recognition and inference). Moreover, the 
causal connections between facial geometry, 
orientation, and lighting out in the world, which 
generate the perceived facial projection, are mirrored 
by causal relations between the corresponding 
representations, connected by causal relations which 
realize processes of prediction and inference. The 
overall effect is the establishment of a functional 
homomorphism (illustrated below). On the functional 
homomorphism theory of representation, such 
relations are definitive of representation.   
 

 
 
The correlation + behavioral causation methodology 
discussed above operates on the implicit assumption 
that a neural activity pattern’s relationship to behavior 
(its behavioral efficacy) is definitive of its status as a 
representation. Our best theory of representation 
suggests otherwise. Rather, it is a putative 
representation’s relations to other representations 
which makes it a representation with a given content. 
These causal inter-relations underwrite the function of 
representations — namely, to keep us aware of 
abstract or temporally or spatially unobserved parts of 
the world by means of inference and prediction. If this 

theory is right, it has broad applications to ongoing 
debates over the contents represented in perception.  
  
What is the best evidence of neural 
representation? 
 
Functional homomorphism theory allows us to 
imagine, for example, what it would be for high level 
physical magnitudes (such as mass), physical 
properties (stability and instability), and physical 
events (collision) to be represented in vision, as has 
been argued by (Battaglia, Hamrick, & Tenenbaum, 
2013; Hamrick, Battaglia, Griffiths, & Tenenbaum, 
2016; Scholl & Nakayama, 2002; Scholl & Tremoulet, 
2000; Schwettmann, Fischer, Tenenbaum, & 
Kanwisher, 2018). 
  
On the view on offer, the way to understand the 
neuroscientific commitments of these theories is by 
way of functional homomorphisms. Theories on which 
the visual system represents the mass of an object are 
theories on which (1) the brain exploits low level 
features such as shape to infer a representation of 
mass, (2) that mass representation is reliably 
correlated with the true mass of the object, (3) that 
mass representation enters into inferential relations 
with a number of other representations, such as 
volume, stability, velocity, in order to (4) causally 
generate low-level expectations about incoming visual 
stimuli (for example, the extent to which a pillow the 
object lands on will indent, the severity of a collision 
with another object, the velocity of that corresponding 
object post collision, etc.). 
 
How exactly these questions should be 
operationalized is an interesting issue that I will not 
attempt to adjudicate. At first pass, however, the 
theory of representation on offer suggests a number of 
ways to more directly probe the computational 
relationships that are constitutive of representation. 
For one, if the relationships between representations 
are definitive of their function, then direct evidence of 
inferential and predictive relationships that require that 
content is the strongest evidence that such a content 
is represented.  
 
If this is right, then decoding methods could be 
improved upon by aiming to provide evidence of 
multiple, semantically related representations. An 
MVPA study that shows that mass can be decoded will 
be more convincing if it also shows that physical 
magnitudes, properties, and event types to which 
mass is related can be decoded as well. Such studies 
shed light on the underlying computational structure 
that accounts for the representation of mass. In this 
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way, they are less susceptible to false positives based 
on spurious correlations between the contents of 
interest and other low level contents.  
 
Finally, to the extent that predictive theories of 
perception are on the right track, the signatures of 
representations of high level contents will be still more 
numerous. A visual representation of mass should be 
tightly related to predicted low level features, such as 
the degree to which a pillow is depressed by a falling 
object (Schwettmann et al., 2018). The ability to 
decode both mass and the predictions that the rational 
use of a mass representation would generate would 
lend further support to the claim that mass is 
represented in vision. 
  
Conclusion: 
  
In conclusion, correlation between a neural response 
and a feature of the environment, even when 
augmented by a behavioral measure demonstrating 
sensitivity to that information, is insufficient to establish 
neural representation. Correlation + behavioral 
causation regimes are susceptible to both false 
positives, when correlated representations are 
employed in subjects’ decisions, and false negatives, 
in the case where intermediate representations are in 
principle unavailable to behavior. 
  
According to our best theory of representation, the 
definitive features of representations are their 
correspondence relations and the mechanisms by 
which these relations are maintained. The 
mechanisms include both directly causal processes 
such as pattern recognition and transduction, as well 
as high level inferential relations. Looking for 
representations of high level contents holistically (i.e. 
in tandem with representations to which they are likely 
computationally related), and for the signatures of the 
computations they enter into, such as prediction, 
provides stronger evidence for representation. 
Methods of this kind home in on the relations that are 
constitutive of representation and avoid both false 
positives and false negatives associated with 
correspondence and behavioral measures alone. 
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