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Abstract: 

The way auditory stimuli are being processed to form 
perceptual unitary or segregated groups of sounds is 
still an ongoing discussion in the Auditory Scene 
Analysis literature. Mechanistic approaches to model 
this phenomenon have been somewhat successful but 
are often overly complicated and constrained to specific 
paradigms. Our approach is that of simplicity. We have 
previously proposed a higher-level source inference 
model in the Bayesian statistical framework that only 
implements a few simple but sensible rules applied to the 
stimuli’s statistics. Yet, it still captures results from 
behavioral data (Yates, Larigaldie, & Beierholm, 2017). 
We have expanded on this model to show its ability to 
adapt to a wider range of well-known perceptual auditory 
phenomena. Several original experiments have also 
been conducted to explore a broader range of stimuli 
statistics. Our model’s responses give insight into 
possible underlying processes in the brain that could 
provide a guide towards more behavioral experiments or 
medical exploration. 

Keywords: Auditory Scene Analysis; Causal inference; 
Bayesian modeling; Perception; Audition; 

Introduction 

While Gestalt psychology has mainly focused on object 
grouping in the visual modality, a lot of auditory streams 
segregation and combination phenomena have been 
described (A. S. Bregman, 1994). 

However, across all modalities it is still unclear how 
our perceptual systems can cope with both omnipresent 
uncertainty and a virtually infinite number of perceptual 
cues to treat, order and categorize in real time. 
Uncertainty in high-level perception is usually 
successfully modeled using  the Bayesian framework 
(Körding et al., 2007) (Trommershäuser, Körding, & 
Landy, 2012). But as the number of perceptual cues 
increases linearly, the amount of possible clusters 
explodes factorially. As a result, most Bayesian models 
cannot be applied to more ecological environments as 
they are limited to a very low number of perceptual cues 
before calculations become intractable. 

On the other hand, lower-level mechanistic 
approaches can be less limited in terms of number of 
percepts to be considered (for a review, see (Bee & 
Micheyl, 2008), but usually produce complex and 
situational models. Furthermore, from a cognitive 
perspective, they are hard to interpret in terms of 
meaningful brain functions. 

We have been developing a non-parametric Bayesian 
model (Yates et al., 2017). The aim of our model is to 
tackle limitations from both approaches by being able to 
consider a potentially unlimited number of perceptual 
objects in reasonable time while not sacrificing 
simplicity nor interpretability. Furthermore, it is 
designed to be abstract enough to easily incorporate 
new perceptual cues, and to be usable across 
modalities. 

Briefly, the model is a Bayesian clustering algorithm 
sequentially treating perceptual cues in order to infer 
the probability that they were produced by a common 
source, via dimensional proximity and parsimony of 
hypotheses. 

The model assumes that given a source, all 
perceivable stimuli being created by this source should 
either have close characteristics on every dimension, or 
would require some time to change its state. That is, it 
is unlikely that a source could create two very different 
stimuli in a very short time. This implies that inference 
over such structure can be done by clustering of 
percepts. For example, if two sounds with frequencies 
F1 and F2 are produced by the same source, the pitch 
cannot change infinitely fast as an oscillator would 
require infinite impulse of energy to change its 
frequency discontinuously. This assumption can in 
general be summarized by proximity over a K-
dimensional plane – with K being the number of 
perceptual cues considered for each stimulus. 
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On top of this generative process, our model also 
assumes parsimony in the number of plausible clusters. 
This is done by introducing a non-parametric prior in the 
form of a Chinese Restaurant Process (Aldous, 1985), 
gradually decreasing the probability of considering a 
new source plausible as more sounds have already 
been assigned to previous sources. 

Implementing only these two reasonable 
assumptions is enough to successfully reproduce 
several well-known auditory phenomena. Original 
experimental data were also collected to further explore 
the model’s predictiveness.  

Methods and Results 

Model specifications 

The first aforementioned assumption can be modeled 
with the following generative process: 
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Where 𝑆𝑛 is sound number 𝑛, 𝐶𝑛 the cluster it belongs 

to (in other words: the source that caused it), ∆𝑐 the 
difference in the considered characteristic (for instance, 
frequency), ∆𝑡 the difference in time between two 

sounds’ onsets and 𝜎 is a constant that can be fitted to 
participants’ responses. It follows that a source is most 
likely to cause stimuli whose characteristics change 

slowly over time. Indeed, as ∆𝑐 ∆𝑡⁄  increases, the 

probability of the newer sound to be in the same cluster 
as the previous sound decreases with a normal decay. 

The second assumption is modeled by a non-
parametric prior weighing these probabilities according 
to the number of sounds already in each cluster: 

𝑝(𝐶𝑁 = 𝑖|𝐶1…𝐶𝑁−1) =
𝑛𝑖

(𝑁 − 1) + 𝛼
 

when cluster 𝑖 has already been inferred, and: 

𝑝(𝐶𝑁 = 𝑖|𝐶1…𝐶𝑁−1) =
𝛼

(𝑁 − 1) + 𝛼
 

when none of the previous clusters is equal to 𝑖. 

 𝑛𝑖 is the number of sounds in cluster 𝑖, 𝑁 is the total 

number of sounds considered and 𝛼 is a constant that 
can be fitted to participants’ responses. It follows that 
as more and more sounds are being considered, the 
probability of assignment to a new cluster decreases. 
On top of this, the model follows a rich get richer 
property, as clusters already comprised of many tones 
have a higher chance of getting more tones than 
clusters with fewer tones. Taken together, these 
properties can be considered as an implementation of 
Ockham’s razor. For details of implementation see 
Yates et al. (2017). 

Phenomena reproduction 

A number of phenomena can be replicated by the 
model, but we will here only present two using auditory 
frequency as sensory cues. 

The first phenomenon is the second experiment taken 
from Bregman & Campbell (1971), highlighting how the 
speed of presentation affects perception of streams of 
tones. Behavioral data shows that faster tones lead to 
an increased probability of subjects reporting two 

Figure 1: Stimuli used in the second experiment from Bregman & Campbell (1971). A slow sequence is 

perceived as a single stream, while a faster sequence in split in two. Stimuli are shown at the top, bottom is 

dendrogram tree-plots based on the posterior distribution over clustering. Across dendrograms, a unique color is 

assigned to clusters with more than 50 percent distance from other clusters 
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perceived streams of sounds rather than one. Figure 1 
shows how our model successfully captures this. The 
model likelihood term constrains how fast streams can 
change in frequency, hence too fast changes makes 
two streams more likely. The “slow sequence” had 
100ms ISIs, 500ms tone duration and pitch differences 
of [0 4 8 26 30 34] semitones from the lowest tone. The 
“fast sequence” reduced the tone duration to 100ms.  

The second phenomenon is taken from Bregman 
(1978) and shows that auditory streaming is cumulative. 
Sequences of tones that split into two perceived 
streams may initially be perceived as one stream. 
Figure 2 shows how our model successfully captures 
this. The non-parametric prior makes a single stream 
more likely when little information has been received. 
The “short sequence” has 26.6ms ISIs, 7 semi-tones 
pitch differences with two repetitions. The “long 
sequence” was instead repeated eight times. 

Novel experiments 

If auditory scene analysis is indeed a process of 
perceptual clustering of auditory stimuli into separate 
streams, then we would expect subjects to be able to 
cluster more than two sets of stimuli, and consequently 
perceive more than two streams. A set of novel 
experiments using a new paradigm have been 
designed in order to explore the influence of several 
sensory cues on the formation of auditory streams, and 
a potentially higher maximum number of perceived 
streams. Only one of these experiments, using 
frequency as a sensory cue, will be presented here. 

Figure 3 is a schematic representation of the stimuli. 
The key realization is that subjects lose the order 
information of tones when assigned to different 
streams. Therefore, subjects should not detect a 
difference between sequences 1 and 2 when medium 
tones do not share a stream with either low or high 
tones, as long as they are ignorant as to which tone 
started the medium stream. This is insured by 
introducing a general fade in effect at the start of every 
sequence. 

Results in Figure 4 show that, as expected, higher 
frequency differences significantly decreased 
participants’ capacity to tell the two sequences apart, 
implying that the middle tones are perceived as a 
separate cluster to either the high or low tones. This 
strengthens the argument that auditory streaming 
formation is being influenced by proximity in frequency 
space, and that humans may hold 3 or more auditory 
streams simultaneously.  

Overall, we show how several aspects of auditory 
scene analysis can be modeled based on very few 
normative assumptions. Experiments support the 
qualitative predictions of the model, an aspect that 
future work will expand on. 
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Figure 2: Stimuli used in the second experiment from Bregman (1978). A short sequence is perceived as a single 

cluster, while a longer sequence is split into two clusters. Stimuli are shown at the top, bottom is dendrogram tree-

plots based on the posterior distribution over clustering.  
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Figure 3: Schematic representation of stimuli used. Medium tones inversion was only present in half of the trials. 

Figure 4: Mean d-prime scores of participants according to conditions. Error bars are standard deviations. 

First numbers in conditions indicate a difference in semitones from L to M1, second number is the difference 

between M2 and H. The difference in frequency between M1 and M2 was always 3 semi-tones. 
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