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Abstract
Sensory processing produces hierarchical representa-
tions, which according to the semantic compression hy-
pothesis, extract increasingly behaviorally relevant quan-
tities from raw stimuli. Predictions of neural activity in hi-
erarchical systems are most often made in supervised de-
terministic models, while probabilistic generative models
provide a more complete unifying view of sensory percep-
tion. Whether unsupervised generative models trained
on naturalistic stimuli give rise to representational lay-
ers of semantically interpretable quantities is yet unre-
solved, as is whether such representations can predict
properties of neural responses in early vision. We use
hierarchical variational autoencoders to learn a represen-
tation with graded compression levels from natural im-
ages, which exhibits variance according to perceptually
relevant texture categories. We predict measures of neu-
ral response statistics by assessing the posterior distri-
bution of latent variables in response to texture stimuli.
Experimental results show that linearly decodable infor-
mation about stimulus identity is lost in the secondary
visual cortex while information is gained about texture
type, which behavior is reproduced by the representa-
tional layers of our model. Deep generative models fit-
ted to natural stimuli open up opportunities to investigate
perceptual top-down effects, uncertainty representations
along the visual hierarchy, and contributions of recogni-
tion and generative components to neural responses.
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Introduction
Semantic compression in hierarchical systems Animals
need to discard the bulk of information acquired through their
sensory organs to obtain the tiny portion that will be used for
present or future decisions in various tasks. The semantic
compression hypothesis (Nagy, Török, & Orbán, 2018) pro-
poses that the efficient way to lose information is to encode
the stimulus through the latent variables in a model of the en-
vironment. In the ventral stream of the visual cortex, com-
pression is realised in a hierarchical manner where the se-
quence of compression steps culminates in the recognition
of objects and concepts where variance along complex vari-
ables such as pose, lighting, and scale are discarded. The
Bayesian brain hypothesis suggests that successive layers of
representation correspond to latent variables of a hierarchical
generative model (Lee & Mumford, 2003). We propose that
applying the semantic compression hypothesis to a hierarchi-
cal Bayesian model results in a sequence of representational

Figure 1: Vision as hierarchical inference. A probabilistic gen-
erative model with multiple layers of latent variables (z1..3) is
trained to compress natural images efficiently (middle). When
a specific stimulus (x) is presented to the model, we can in-
fer the corresponding latent representation in each layer. We
can condition the generative model to the inferred represen-
tation on any specific layer and generate samples from the
model that keep the information represented at the given layer
and sample lower-level details from the learned distributions
(right). Layers of representation in the model can be used to
make predictions about measurements from different areas of
the ventral stream of the visual cortex (left).

layers that extract increasingly abstract descriptors of the ob-
servation from the statistical properties of the stimulus (Fig.
1). Consequently, representations will be invariant to increas-
ingly complex transformations at each layer. For example, as
depicted in Fig. 1, when presented by an animal fur pattern,
conditioning on the lowest-level inferred latents we can gen-
erate the same pattern with different observation conditions
(such as lighting), on mid-level latents, different samples from
the same type of fur pattern, and on higher-level latents, dif-
ferent types of fur patterns. Measurements of auditory per-
ception have shown the extraction of summary statistics from
complex stimuli (McDermott, Schemitsch, & Simoncelli, 2013)
in a way compatible with semantic compression. Here we aim
to show that unsupervised hierarchical models also extract se-
mantically relevant latent variables in the visual domain.

Assessing representations in the visual hierarchy What
quantities influence the activity of neurons in various parts of
the visual hierarchy beyond the primary visual cortex (V1) is
a question far from settled. Recent studies characterise mid-
level sensitivities in the secondary visual cortex (V2) (Ziemba,
Heeger, Simoncelli, Movshon, & Freeman, 2013). How such
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sensitivities constitute a representation can be defined in mul-
tiple ways, the simplest of which is linear decodability. Suc-
cessive processing areas implementing increasing linear de-
codability of behaviourally relevant quantities is proposed in
the hypothesis of representational untangling in higher-level
visual areas (DiCarlo, Zoccolan, & Rust, 2012). Furthermore,
recent evidence suggests that information related to texture
categories is available linearly in V2 but not in V1, while lin-
ear information about the stimulus identity available linearly
in V1 is lost at V2 (Ziemba, Freeman, Movshon, & Simon-
celli, 2016), indicating different degrees of compression being
implemented in the early visual hierarchy as well. Here we
set out to investigate if semantic compression in a generative
model trained on natural images reproduces this signature.

Predicting neural responses in hierarchical systems Re-
cent studies demonstrated impressive performance on pre-
dicting neural activity in hierarchical systems (Yamins et al.,
2014; Cadena et al., 2019). These models rely on feed-
forward deep networks trained to classify images. However,
recent evidence suggests that increasing predictive perfor-
mance will require the consideration of top-down effects (Kar,
Kubilius, Schmidt, Issa, & DiCarlo, 2019), which have also
been shown to play a role in cortical computations experi-
mentally (Lee & Nguyen, 2001; Bányai et al., 2019). Prob-
abilistic generative models are well suited to describe such
effects (Lee & Mumford, 2003), and have been used to pre-
dict response statistics in early vision (Coen-Cagli, Dayan,
& Schwartz, 2012; Orbán, Berkes, Fiser, & Lengyel, 2016;
Bányai et al., 2019). As opposed to feed-forward networks,
hierarchical generative models are trained in an unsupervised
way, trying to learn the distribution of inputs as well as possible
given capacity constraints instead of trying to perform a spe-
cific task well, which is exactly what we expect different layers
of representations to do if they are to compress inputs to differ-
ent degrees. The question of whether semantic compression
is a product of task-training or obtainable in an unsupervised
way remains open.

There are a number of architectural choices one has to
make when building a generative model. The lowest level of
visual cortical representations is suggested to be close to lin-
ear by Olshausen and Field (1996), formulated as a genera-
tive model by Barello, Charles, and Pillow (2018). Beyond V1
we obviously need nonlinear computations, but the constraints
on the kind of generative model that would capture this com-
putation are not well characterised, thus warranting the ap-
plication of a generic machine learning model implementing
hierarchical inference. In this study we propose a hierarchi-
cal probabilistic generative model fitted to natural stimuli, pro-
ducing multiple layers of increasingly compressed representa-
tions, suitable to make predictions about statistical properties
of neural activity in visual cortical areas in response to specific
images.

Methods
Texture families to probe layers of representation In or-
der to probe hierarchical representations, we need stimulus
sets of compositional nature, such that low-level local features
of the image are organized to define an abstract property for
the stimulus, which can be treated as a categorical label. Re-
cent results suggest that texture is a relevant abstraction for
the secondary visual cortex (Ziemba et al., 2013). Texture
images can be synthesised using photographs of natural tex-
tures (Portilla & Simoncelli, 2000), enabling us to produce a
large number of samples from the same texture family (Fig.
2A). Such texture families are well suited to test semantic
compression through linear decodability, since the average
image of a family is always zero, all family-specific informa-
tion being present in higher-order pixel statistics, as opposed
to e.g. the digit categories of MNIST which are decodable
linearly from the pixel space (Fig. 2B).

Figure 2: A. Samples from three texture families used to eval-
uate our models. B. The digit categories of MNIST are lin-
early decodable from the data space, while texture families
are not characterised by different average pixel patterns, thus
are not decodable linearly. Dashed lines indicate chance val-
ues, while bars and error bars represent mean and S.E.M. of
cross-validation folds respectively.

Hierarchical variational autoencoders Bayesian inference
in hierarchical models is computationally intensive, thus the
brain is expected to implement efficient approximate solu-
tions. Variational methods use tractable distributions to infer
the posterior of latent variables. Recognition-generative mod-
els, such as variational autoencoders (VAE) use an explicit
feed-forward model to implement variational inference (Dayan,
Hinton, Neal, & Zemel, 1995; Kingma & Welling, 2013).

VAEs have been used to describe semantic compression
using a capacity parameter to balance the fidelity and the
bandwidth of the latent representation (Alemi et al., 2017).
They have been demonstrated to capture the abstraction of
the digit category in MNIST, but not in more complex categor-
ical stimuli (Fertig, Arbabi, & Alemi, 2018).

A natural extension of the VAE model family is to define hi-
erarchical layers of latent representations in order to capture
the stimulus statistics at different levels of abstraction, such
as in Fig. 1. Learning such hierarchical representations is
a nontrivial problem, for which multiple proposed solutions ex-

744



ist. One of these is the Ladder Variational Autoencoder (LVAE)
(Sønderby, Raiko, Maaløe, Sønderby, & Winther, 2016), which
uses a direct feed-forward mapping from the stimulus to all la-
tent layers during inference, allowing for the efficient learning
of latent hierarchies while introducing no additional compu-
tational steps into the generative model. We used LVAEs as
models of the representational hierarchy in the ventral stream,
fitting them to naturalistic stimulus statistics and then present-
ing them texture stimuli to compare properties of the inferred
representations to those measured from the visual cortex.

Results

Comparison of model and measurement We fitted a two-
layer LVAE to whitened natural image patches of 16x16 pixels
obtained from the van Hateren dataset (Hateren & Schaaf,
1998) (shown in Fig. 3A). The architecture consisted of 20
and 5 stochastic units in the two latent layers. The lower level
representation was connected to the stimulus through a linear
encoder and decoder. The second layer was connected to
the first using two densely connected ReLU layers of 32 units
each and a batch normalization layer both in the encoder and
the decoder. The observation noise was fixed at 0.1. The
parameters of the model were fitted to the natural patches us-
ing the Adam optimizer for 60 epochs with a learning rate of
0.001, using a burn-in period (Sønderby et al., 2016) of 10
epochs.

As we wanted to compare the properties of the learned rep-
resentations to those measured in macaques by Ziemba et al.
(2016), we inferred the latent representation of texture stimuli
shown in Fig. 2A. We constructed linear mixture of Gaussian
decoders both to distinguish between the latent representa-
tions of specific stimuli and the families they were sampled
from, using the representations from both latent layers of the
LVAE. The performance of the decoders was calculated as
the cross-validated hit rate for either 4 samples from the same
family or 4 from different families. The performances were
plotted against each other to contrast the properties of the
representations learned in the two layers (Fig. 3B). The first
layer could be used much better to recover the identity of the
stimulus. Most of this information was lost at the second layer,
while making the family more linearly decodable. This result
is in accordance with the findings from macaque V1 and V2.

Semantic compression can be probed using nonlinear
read-out instead of a linear one as well. We used the t-
SNE nonlinear embedding method (Maaten & Hinton, 2008)
to show that the second-layer representation of texture images
is more clustered according to family membership (Fig. 3C),
similarly to measurements from macaque V1 and V2.

We explored which architectural choices are essential to
produce the results we demonstrate. An indispensable feature
of the model is the increasingly compressed representation in
the layers. However, the compression levels can be achieved
by controlling the information capacity of the layers in multi-
ple ways, such as the dimensionality of the layers, but also
the expressive power of the encoders and decoders used in

them. The latter property opens up an avenue to train models
of much higher latent dimensions with similar semantic com-
pression properties as ours.

Figure 3: Representations learned by a two-layer LVAE from
natural images. A. Whitened natural patches used for training
the model. B. The decodability of the stimulus identity of tex-
ture stimuli of the kind shown in Fig. 2 (grey dots) and the fam-
ily they are sampled from (pink dots). Red and black dots rep-
resent the mean of all the decoding comparisons and dashed
lines represent chance levels. The representation learned in
the first layer of the LVAE contains more information about the
identity of the stimulus, while the second layer contains more
about the family. Cf. Figure 5B of Ziemba et al. (2016). C.
T-SNE plot of texture stimuli as represented in the two lay-
ers of the LVAE. Colors indicate the family of each sample,
large dots indicate the mean of each family. Samples from the
same family are more clustered together in the second layer.
Cf. Figure 4 of Ziemba et al. (2016).

Visualising semantic compression The learned represen-
tations that reproduce experimentally measured untangling ef-
fects are expected to compress the stimuli at different seman-
tic levels, as in Fig 1. Since we learn a model of natural
images, a high number of latent units would be necessary
to learn all the factors of variance that include the ones di-
rectly relevant to texture samples, making the levels of vari-
ation easily observable visually. Instead of training such a
model, we retrain an LVAE using the texture stimuli, directly
producing the subset of latents that describe these stimuli in
particular. We then infer the latent representation in each layer
in response to specific textures, and condition the generative
model on the inferred representation in each layer. We indeed
observe that conditioning on the lower layer produces sam-
ples that reproduce the particular content of the input image
and differ only due to the observation noise which is indepen-

745



Figure 4: Layer-conditional reconstructions from a two-layer
LVAE trained on texture stimuli. For two example stimuli (no
border) we take three samples from the posterior distribution
of all latent variables, and generate synthetic stimuli condi-
tioning on the latent samples in the first (blue border) and the
second (green border) layer. First-layer generated samples
differ only in terms of pixel noise, while second-layer samples
are different instances of the same texture family.

dent across pixels. Conversely, conditioning the generative
model on the higher layer produces samples that come from
the same texture family as the input, but vary in terms of the
particular realisation of the texture.

Conclusions
Variational autoencoders implement hierarchical Bayesian in-
ference producing a series of increasingly compressed rep-
resentation of the input. When trained on natural images
in an unsupervised way, they reproduce representational un-
tangling of texture stimuli similarly to the visual cortex of
macaques, while the learned generative model exhibits varia-
tions in the successive representational layers corresponting
to perceptual categories.
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