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Abstract
Deep learning has recently been combined with Q-
learning (Mnih et al., 2015) to enable learning difficult
tasks such as playing video games based only on visual
input. Stable learning in the in the deep Q network (DQN)
is facilitated by the use of memory replay, which means
that previous experiences are stored and sampled from
during an offline learning period. We evaluate the DQN’s
ability to learn and retain multiple variations of a spatial
navigation task in a virtual environment. Task variations
are presented in visually distinct contexts by varying light
conditions and environmental textures. Replay memory
capacity is varied to measure its effect on task retention.
The representations of multiple contexts learned by the
DQN agents are analyzed and compared. We show that
DQN agents learn a preference for common actions early
on, irrespective of replay memory capacity. A limited re-
play memory causes agents to confuse state-values. Fur-
thermore, we find that contexts are quickly forgotten as
soon as corresponding experiences are no longer avail-
able in the replay memory.

Keywords: Reinforcement learning; Q-learning; Deep learn-
ing; Spatial navigation

Introduction
In the real world, humans and other animals learn strategies
that help them survive by interacting with their environment.
This type of learning is known as reward learning (Pierce &
Cheney, 2004) and is used in both classical and operant con-
ditioning (Bouton, 2007; Rescorla, 1988). Behaviors are re-
inforced according to rewards and punishments an animal re-
ceives (White, 2011; Schultz, 2015). Strategies have to be
learned sequentially. This biological reinforcement inspired
a field of machine learning which is known as reinforcement
learning (Sutton & Barto, 2018). In recent years, reinforce-
ment learning was combined with deep learning (Goodfellow,

Figure 1: Virtual environment used in the computational study.
Room walls are textured with monochrome images. Outlined
are the agent (red), the area over which the topology graph is
spanned (green) and the light source (yellow).

Bengio, & Courville, 2016) in different algorithms (Silver et al.,
2016; Mnih et al., 2016). In this work, we use a deep reinforce-
ment learning algorithm known as the deep Q network (DQN)
(Mnih et al., 2015). The DQN combines Q-learning (Watkins,
1989) with deep neural networks (DNNs), non-linear function
approximators. The stability issues encountered when com-
bining these two methods (Tsitsiklis & Van Roy, 1997) were
overcome in DQN by using experience replay (Lin, 1992).
Memory replay has been shown to alleviate problems asso-
ciated with catastrophic forgetting in DQN (Kirkpatrick et al.,
2017; Atkinson, McCane, Szymanski, & Robins, 2018), which
is similar to neurobiological theories of memory replay driven
by the hippocampus (McClelland, McNaughton, & O’Reilly,
1995). However, in the machine learning studies millions of
learning steps are required, which is not realistic for biological
agents. Therefore, we investigate how a DQN learns multiple
variations of a spatial navigation task using a small number
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Figure 2: Context retention performance averaged for impaired (left) and mildly-impaired (right) DQN agents. Horizontal axis
shows additional contexts learned. Both agents keep retention performance at a high level while corresponding experiences are
still in the replay memory. The mildly-impaired agent’s larger memory capacity allows it to retain high performance longer than
the impaired agent. For the mildly-impaired agent retention performance appears to drop more gradually for most contexts.

of learning trials. We are interested in particular in the role of
the replay memory’s capacity. Furthermore, we compare rep-
resentations learned by DQN agents with different memory
capacities.

Methods

The following sections provide descriptions for the virtual en-
vironment used in the experiments, the network architecture
used and the experimental setup. Experiments are performed
in the “Hippocampus Project” developed by Walther et al.
(2018).

The Virtual Environment

We train DQN agents on multiple variations of a spatial navi-
gation task modeled after the multi-context version of the Mor-
ris water maze (Snyder, Clifford, Jeurling, & Cameron, 2012).
The virtual environment used in our experiments consists of a
quadratic room with a light source in its center (see Fig. 1).
Visually distinct contexts are created by changing the room’s
wall textures and the light source’s color. The task is to navi-
gate on a topology graph from random starting nodes to a goal
node. The topology graph spans a predefined area within the
room (Fig. 3) and is obtained by Delaunay triangulation (Lee
& J. Schachter, 1980). Rewards provided to the agents repli-
cate conditions experienced by rats in the Morris water maze
(Morris, 1981): As the DQN agents navigate on the graph they
receive a negative reward of−1 in each step. In each context,
one node in the graph serves as the goal. On arriving at the
goal, the DQN agents receive a positive reward of +1. Trials
end either when the DQN agents reach the goal node or after
100 steps. Because the number of neighbor nodes varies, an
action space of 8 is chosen. At every node the action ai will
move the agent to the neighbor node ni. For actions with no

corresponding neighbor node the agents will stay at their cur-
rent node. The graph used in our experiments has a total of
21 nodes.

At each node the agents make observations. Observations
consist of panoramic color images with a FOV of 360◦ by 90◦.
Image orientation is fixed and always faces “north”. Image
dimensions of 120x20x3 are chosen for the input of the DQN
agents.

Figure 3: Topology graph with 21 nodes that the DQN agents
navigate on in our experiments. Delaunay triangulation (Lee
& J. Schachter, 1980) is used to obtain the graph. In each
context one node is randomly chosen as the goal (colored in
green).
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Network Architecture and Parameters
We use a convolutional neural network (CNN) (Lecun, Ben-
gio, & Hinton, 2015) to process the visual input. The network
consists of two 2-dimensional convolutional layers, each of
which is followed by a max pooling layer for dimensional re-
duction. The first and second convolutional layers implement
32 4x4x3 filters and 64 3x3x32 filters respectively. The last
max pooling layer is flattened and fed into a fully connected
layer with 512 units. In order to boost sample efficiency we
employ Wang et al.’s (2015) dueling architecture, which splits
the network into state-value and action-advantage streams.
Q-values are obtained by aggregating state-value and action-
advantage streams. Up until the network split, ReLU activa-
tions are used for all layers. State-value and action-advantage
streams use linear activations.

The DQNs are trained with mini-batches of size 64. For
exploration, an ε-greedy strategy with ε = 0.2 is chosen. As
an optimizer Adam with a learning rate η = 0.001 is used.
Future rewards are discounted with a factor of γ = 0.9.

Experiences et = (st ,at ,rt ,st+1) are stored in a dataset
Dt = {e1, ...,et} called the replay memory. During learning,
small batches are drawn uniformly at random from the replay
memory to update the DQN’s weights.

Experimental Setup
We train DQN agents with three different replay memory ca-
pacities:

1. ‘Intact’ agent with a replay memory that can store all expe-
riences.

2. ‘Impaired’ agent with a replay memory that can store the
most recent 15,000 experiences.

3. ‘Mildly-impaired’ agent with a replay memory that can store
the most recent 21,000 experiences.

We generate 20 random contexts with random goal nodes to
be presented to the agent. Contexts are presented sequen-
tially for 500 trials each.

Results
Context Retention
We measure context retention by comparing the length of the
selected path to an optimal path. If the agent selects an opti-
mal path it receives a performance rating of 1 and receives a
performance rating of 0 if the agent has not reached the goal
within 21 steps (meaning it cannot find the goal). Performance
ratings are averaged for all starting nodes. We obtain optimal
path lengths using scikit-learn’s graph shortest path module.

Figure 2 shows retention performance over additional con-
texts learned. For the intact agent performance for all contexts
is kept close to 1 after they are learned. The impaired agent
retains a context for roughly 6-7 additionals contexts before
performance starts to degrade considerably. Retention per-
formance falls quickly but not instantly. Contexts are retained
for roughly 2 more additional contexts by the mildly-impaired
agent.

Network Representations
Network layer activations of action-advantage and state-value
streams are recorded at each node of the topology graph in
each context. For dimensionality reduction we use principal
component analysis (PCA) (Abdi & Williams, 2010) to project
the activations of the action-advantage stream to the first two
principal components. Projections are computed every 500
trials. We analyze representations learned by the intact and
impaired DQN agents.

Figure 4: PCA projections of the intact DQN agent’s action-
advantage stream to the first two principal components (for
dimensionality reduction). Shown are different stages during
the experiment: After learning context 1 (top left), after learn-
ing context 6 (top right), after learning context 12 (bottom left)
and after learning all contexts (bottom right). Action a0 to a3
(indicated by different colors) start forming a distinct clustering
after context 6 is learned.

Intact Agent We find that the state-value stream learns goal
node distances. State-values are ordered and form 5 clus-
ters. Action-advantages show a distinct clustering of actions.
Actions a0 to a3 form clustered quadrants. Other actions
form loose clusters but require projection to three dimensions
(not shown). When looking at the evolution of the action-
advantage stream, we find that said clustering emerges as
early as after learning the 6th context (Fig. 4). For the state-
value stream we find that goal distances are learned gradually
over the course of learning. This is expected, because the
agent cannot know the position of a goal it has never found
before.

Impaired Agent The impaired DQN agent is not able to re-
tain goal node distances in its state-value stream for all con-
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texts. Only when corresponding experiences are in the replay
memory can the DQN retain correct distances. As is the case
for the intact agent, the impaired agent’s action-advantage
stream forms distinct clusters for actions a0 to a3.

Discussion
We find that context retention performance strongly depends
on the replay memory’s capacity. This shows that memory
replay also benefits smaller learning problems. The represen-
tations learned by the DQN agents in our study reveal that the
state-value stream learns goal node distances, but can only
retain them when corresponding experiences are still in the
replay memory. Furthermore, the action-advantage stream
forms clusters of actions which appear in PCA projections as
quadrants. The DQN agents learn, irrespective of memory ca-
pacity, a preference for actions a0 to a3 and they do so early
in the experiments. Thus, the agents learn to exploit the struc-
ture of the topology graph since nodes have roughly 4 neigbor
nodes on average.
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