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Abstract
It has recently been proposed that hippocampal replay
can be explained in a reinforcement learning setting as
the instantiation of the Dyna framework. This formulation
lends itself to a dual-process model: an agent can choose
to either act or replay at every time step. Here, we extend
the proposed model by adding a controller that arbitrates
between replaying and acting in order to maximize reward
rate. That is, rather than give a fixed budget of replays
to perform in both the starting and final state, we allow
the agent to dynamically decide how much to replay in all
states. The first result is that, in a Gridworld task, this al-
gorithm is able to converge to the optimal policy faster.
Second, by tracking the amount of replay selected per
trial, we observe that there is only a narrow range of trials
in which replay is beneficial. We propose this model as
both a more efficient use of the Dyna framework as well
as a normative model of how rational animal and human
agents should replay.

Keywords: hippocampal replay; dual-process; control; rein-
forcement learning; rational analysis

Introduction
Dual-process models are ubiquitous in cognitive psychology
and neuroscience. Often, they pit a fast, reflexive system ver-
sus a slow, deliberative system. This creates a higher-level
form of a speed-accuracy tradeoff (in the choice between pro-
cesses), and normative models of control aim to optimally de-
cide the conditions under which each system should be used.

Recently, Mattar and Daw (2018) proposed a dual-process
model incorporating hippocampal replay, the re-activation of
place cells in rodents at rest. Using a reinforcement learn-
ing framework, they suggested that agents use replay in or-
der to propagate reward information and thus receive the re-
ward quicker. Their algorithm builds on the Dyna framework
(Sutton, 1990), in which agents act with a model-free learner
but are allowed to simulate experience using their knowledge
of the world.

When Sutton first proposed the Dyna framework, he noted
that optimal search control must address two questions, con-
cerning what to simulate and when to simulate. The Mattar &
Daw model offered a solution of what to simulate. Here, we
tackle the second question: when (and, correspondingly, how
much) to simulate. We show that a control mechanism able
to adaptively determine when and how much to simulate out-
performs the previous Mattar & Daw model. Furthermore, it
allows us to model how the arbitration between acting and re-
playing changes over time, demonstrating that an agent does

not need to replay after a certain amount of trials. Lastly, our
results point to a potential relationship with paradigms in which
agents must optimally trade off exploration vs. exploitation in
order to maximize reward rate.

Background
Markov Decision Processes
Sequential decision problems are often modeled as a
Markov decision process (MDP). An MDP M is a 5-tuple
(S ,A ,R ,P ,γ), where S is the set of states, A is the set of
actions, R (s) is the reward received in state s, P (s,a,s′) is
the probability of transitioning to from state s to state s′ using
action a, and γ is the discount factor. A policy π : S 7→ A is a
function that determines with what probability an agent should
perform action a when in state s, and the goal of the reinforce-
ment learning agent is to identify the policy that maximizes its
reward.

Model-Free Learning
There are two canonical types of reinforcement learning:
model-free learning and model-based learning. Model-free al-
gorithms do not require an agent to have any knowledge about
the environment’s transition structure. Rather, it keeps a table
that maps state-action pairs to values and chooses how to act
based on a simple lookup operation.

One of the most commonly used model-free algorithms is
Q-learning (C. J. C. H. Watkins, 1989). In Q-learning, an
agent keeps a table of all Q(s,a) values and, after every state-
action-state transition (s,a,s′), updates according to the rule:

Q(s,a)← Q(s,a)+α(R (s′)+ γmax
a′

Q(s′,a′)−Q(s,a))

where α refers to the learning rate of the agent.
C. J. Watkins and Dayan (1992) demonstrated that Q-

learning converges to the optimal policy π∗ given sufficient
experience. However, sufficient is the problem. If the goal
is to maximize reward rate, then the question arises: how can
Q-learning be sped up?

Dyna
Dyna is a framework proposed by Sutton (1990) in order to
speed up model-free learning. In addition to acting with a
model-free system, the agent can have a model of the en-
vironment that it uses to generate simulated experience and
train the model-free system “offline:” the agent replays a
(s,a,s′,R (s′)) tuple and then uses the standard Q-learning
equation to update its Q-values.

Sutton (1990) demonstrated that these simulated experi-
ences speed up the process of learning. However, in his initial
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Figure 1: Example run in the Gridworld environment used to do model comparison. The left image shows the maze environment,
the agent’s location, and the reward location. The middle image shows the value of the states, where darker red refers to a higher
value. The arrows colors reflect their Q-value. The right image shows to the estimated successor representation, where lighter
shades designate states that are expected to be visited more in the future.

formulation of Dyna, experiences were simulated randomly.
He noted that an improvement would be to add “search con-
trol;” that is, optimization of what and when to replay. Along
these lines, research in reinforcement learning (Moore & Atke-
son, 1993; Peng & Williams, 1993; Schaul, Quan, Antonoglou,
& Silver, 2015) has generated heuristics for deciding what
to replay. Recently, Mattar and Daw (2018) offered an algo-
rithm to calculate the optimal experiences to replay. For every
potential experience (sk,ak,s′k,R (s′k)) to simulate, they com-
puted the Expected Value of Backup (EVB):

EV B(sk,ak) = E
πnew

[
∞

∑
i=0

γ
iRt+i|St = s

]
− E

πold

[
∞

∑
i=0

γ
iRt+i|St = s

]
= Gain(sk,ak)×Need(sk)

where

Gain(sk,ak) = ∑
a∈A

Qπnew(sk,a)
(
πnew(a|sk)−πold(a|sk)

)
and

Need(sk) =
∞

∑
i=0

γ
i
δst+i,sk

The gain term is computed online while the need term is taken
from the estimated successor representation (Dayan, 1993),
M̂. Applying this algorithm to a Gridworld scenario, Mattar
and Daw (2018) demonstrated that a reinforcement learning
agent replaying the memories with the highest EVB exhibits
similar qualitative patterns to place cell activations in rodents.

Rational Arbitration of Hippocampal Replay
Dual-process models also raise the question of when each
system should be used (Daw, Niv, & Dayan, 2005; Keramati,
Dezfouli, & Piray, 2011). Keramati et al. (2011) proposed that
arbitration between a model-free and a model-based system
should be done with respect to reward rate maximization. That
is, given that the model-based system is more accurate but
comes at the cost of time, it should only be used if the gains in

accuracy outweigh the potential loss of reward in that amount
of time.

Here, we apply a similar methodology for considering the
value of replay in the model proposed by Mattar & Daw, to
determine when it is worth engaging in replay. At every time
step, the agent has the option to act or to replay, and we con-
sider the cost of replaying instead of acting to be the opportu-
nity cost of time (Kurzban, Duckworth, Kable, & Myers, 2013;
Shenhav, Botvinick, & Cohen, 2013).

Let τ refer to the ratio between the time it takes to replay and
the time it takes to act. One estimate of τ is 0.04, that comes
from the speed of sharp wave ripples in the hippocampus;
these occur at approximately 1,000 cm/s (Pfeiffer & Foster,
2013) as compared to the speed of running on a track, which
is approximately 40 cm/s (Wikenheiser & Redish, 2015).

We extend the previous EV B and introduce EV BC, that cal-
culates the expected value of replay with an opportunity cost,
by positing that the new expected future reward is additionally
discounted by γτ:

EV BC(sk,ak) = E
πnew

[
∞

∑
i=τ

γ
iRt+i|St = s

]
− E

πold

[
∞

∑
i=0

γ
iRt+i|St = s

]
= γ

τ E
πnew

[
∞

∑
i=0

γ
iRt+i|St = s

]
− E

πold

[
∞

∑
i=0

γ
iRt+i|St = s

]
= M̂(s,sk) ∑

a∈A
Qπnew(sk,a)

(
γ

τ
πnew(a|sk)−πold(a|sk)

)
Now, let EV B∗C = max(sk,ak) EV BC(sk,ak). If EV B∗C > 0,

the agent should replay the corresponding state-action-state
experience. However, once the value of replaying falls below
zero, it should act in accordance with its policy because re-
playing is now not worth the opportunity cost.

Methods
Like Mattar and Daw (2018), we use a 9× 6 Gridworld envi-
ronment with three sets of walls. The agent starts at (1,3)
and must gain the reward at (9,6). A sample run of the envi-
ronment is displayed in Figure 1.
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Figure 2: Time it takes for each algorithm to complete a given
trial, which is calculated as the number of physical actions plus
τ times the number of experiences replayed. Error shading
indicates ±1 SEM.

We set α and γ to values of 0.9, and the agent learned the
successor representation using the standard temporal differ-
ence learning algorithm (with α and γ values again set to 0.9).
The agent acted with a softmax policy, i.e.

π(at |st) =
eβQ(st ,at )

∑a eβQ(st ,a)

in which β is the temperate parameter. For our simulations,
we let β = 5.

Lastly, our implementation differs from the Mattar & Daw
model in two ways. First, we restrict the agent to be able to
simulate only previous experiences rather than all possible ex-
periences. Second, the agent automatically restarts the maze
after receiving the reward, and thus does not have the oppor-
tunity to replay post-reward in the same trial.

We compare this ‘adaptive replay’ model to (1) the Mattar
& Daw model that replays twenty times at both the beginning
and end of each trial, as well as (2) a model without any replay.
In this simulation, we use τ = 0.04.

Results
In Figure 2, we plot the amount of time it takes for each agent
to find the reward during every trial. We conducted fifty sim-
ulations of each agent partaking in twenty trials apiece. The
amount of time is calculated as the number of actions (i.e.
moving up, down, left, right) in the trial plus τ times the num-
ber of replay events in the trial. We see that the Mattar & Daw
model, which has forty replay steps per trial (except for the first
trial, in which it has twenty), converges significantly faster than
a model without replay. The adaptive replay model is even
faster, converging to a stable policy between trials three and
four. However, it should be noted that this faster convergence
is a product of more replays, and if the fixed budget of the
Mattar & Daw agent was set to the maximum replay amount

Figure 3: Number of experiences replayed every trial for the
adaptive replay agent over a range of potential values of τ,
compared with that of Mattar & Daw. Error shading indicates
±1 SEM.

by the ‘adaptive replay’ agent, that model may perform better
than it currently is during the earlier trials.

To gain insight into the difference between these models,
and the contribution made by the current one, we plot the
amount of replay per trial for the adaptive replay agent in Fig-
ure 3. We also show the results of simulations using multiple
values of τ, to determine its influence on replay frequency.
Figure 3 demonstrates that, regardless of the value, there is
consistently little replay at the beginning, followed by a rapid
increase until it reaches a peak, and then a decrease as
model-free learning converges to the optimal policy.

This behavior resembles an explore-exploit tradeoff
(Wilson, Geana, White, Ludvig, & Cohen, 2014), as well as
a switch to habitual (i.e. model-free) decision-making (Dolan
& Dayan, 2013). The initial lack of replay presumably reflects
the value of exploring the environment and acquiring experi-
ence that can be used later for replay. That is, when the agent
has relatively uninformative Q-values and little experience, re-
play is uninformative. However, once the agent has gained
sufficient experience to have informative Q-values, it priori-
tizes replay over acting as way of propagating this information
quickly. This corresponds to the trials in which the replay is
near its peak. As replay uses this information to inform the
agent’s Q-values, the need for replay diminishes. Eventually,
the agent develops a sufficiently good model-free policy that
diminishes the opportunity and thus favors action over replay.
In sum, by maximizing reward rate, the adaptive replay model
captures both the change from exploration to exploitation, as
well as the transfer from primarily replaying to primarily acting
in the exploitation stage.

Discussion

The strength of the Mattar & Daw model was not just faster
reinforcement learning, but also the close match of its behav-
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ior to that observed in rodents. Similarly, the extension we
propose here may help explain additional empirical findings.
Foster (2017) hypothesized that overtraining was the reason
scientists took much longer to discover awake replay after the
discovery of sleep replay, and that hypothesis has been sup-
ported by experiments demonstrating that replay occurs more
in novel environments than familiar environments (Foster &
Wilson, 2006; Diba & Buzsáki, 2007). Furthermore, it has
also been suggested that replay increases with initial expo-
sure (Buhry, Azizi, & Cheng, 2011). The results shown in Fig-
ure 3 support both of these claims.

Our formulation also leads to an interesting observation: in
a given trial, replay has a lower opportunity cost at distances
far from the reward, because the expected future discounted
reward is lower. This can be tested in future empirical work,
that tests: (1) the effect of a state’s expected reward on the
amount of replay, and, correspondingly, (2) the change in total
amount of replay from novelty to habituation. Both the Mattar
& Daw model and the adaptive replay model proposed here
make the unrealistic assumption that the value of replay can
be computed precisely before actually replaying. Discrepan-
cies between empirical results and these models may suggest
heuristics agents are using in order to estimate these values.

Conclusion
A rational agent seeks to maximize reward rate, not just re-
ward. In this paper, we added a rational arbiter to the Mattar
& Daw model, that that sought to maximize reward rate by
determining whether to act or replay. We found that such an
agent exhibited three phases during learning of a new task: an
exploration phase in which it acquires experiences and builds
up informative Q-values; a deliberative exploitation phase in
which it uses these Q-values to replay; and a habitual exploita-
tion phase in which it is able to act quickly based on mature
Q-values. The model makes novel predictions that could be
tested in future empirical work.

The model also raises questions about related theoretical
assumptions. For example, it updated its successor represen-
tation only when an actual action took place, but not when a
replay step was simulated. If replay is equivalent to another
action, should it also affect the successor representation? If
so, this raises the question of how the successor represen-
tation can be scaled to domains in which actions can take
different amounts of time. Furthermore, the current model
used a pre-specified value for τ, the ratio between the time
required for a single replay and the time require for an overt
action. However, it seems reasonable to assume that τ may
vary for different environments, different agents, or even the
same agent in different states. Thus, an interesting direction
for future pursuit is to consider how an agents might estimate
τ, and adaptively adjust in different conditions.
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