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Abstract: 

There is increasing focus in cognitive and computational 
neuroscience on the use of encoding and decoding 
models to gain insight into cognitive processing. 
Frequently, encoding models are fit to a number of 
different features sets, and the out-of-sample predictive 
performance of the resulting models is compared. 
However, to gain the maximum benefit from this 
modelling, we need to go beyond simply ranking model 
performance in terms of absolute predictive power. We 
also need to directly compare and relate the predictions 
between models, to gain insight into which models are 
predicting common vs unique aspects of the neural 
response. The Partial Information Decomposition (PID) 
provides a principled theoretical framework to address 
this question, as it decomposes the total predictive 
performance of two models into redundant 
(overlapping), unique, and synergistic parts. We show 
that like classical information theoretic quantities, 
variance decomposition approaches conflate synergy 
and redundancy and so could provide a misleading view 
of the unique predictive power of a model. We also 
suggest how the use of encoding models and PID can 
help interpret decoding models.  
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Comparing model predictions 

Existing Approaches A number of studies have used 
variance-based approaches to partition unique and 
common variance predicted by different models. While 
these rely on common approaches to comparing 
variance (Seibold and McPhee, 1979), they differ in how 
they are applied. One approach involves comparing R2 
values directly from predictive models fit on 
combinations of feature spaces (Heer et al., 2017; 
Lescroart et al., 2015). However, this suffers from the 
complication that the model fitting procedure, including 
regularization, might interact with the different feature 
spaces when they are considered separately vs jointly. 
An alternative approach is to perform the variance 
partitioning as a “second-level” analysis, applied to the 
low-dimensional predictions of the individual models. 
The second-level approach has the advantage that any 
modelling approach can be used for the two considered 
feature models – they are not restricted to linear 
regression. The approach can also be applied to 

generalized linear models, neural network model 
predictions, representational geometries (Hebart et al., 
2018), etc. 

Partial Information Decomposition The PID provides 
a framework to decompose the information conveyed 
about a target by a set of sources, into that which is 
unique to each, redundant (or common) to each subset 
or synergistic between each subset (Ince, 2017; Park et 
al., 2018; Williams and Beer, 2010). Here we consider 
the predictions of two models on a hold-out test set as 
the two sources, and the corresponding observed 
neural data as the target (Daube et al., 2019). Note that 
here the predictions of each model are directly 
compared as a second-level analysis after the 
individual model fitting without using a separate joint 
model. Redundancy quantifies the common predictive 
power between the two models. Unique information 
provides the unique predictive power of each – i.e. 
quantifies the occasions where one model would 
correctly predict a sample while the other wouldn’t. 
Synergy quantifies that the sample-by-sample 
relationship between the two predictions encapsulates 
extra predictive information about the data that is not 
captured by either model alone, and therefore suggests 
that a joint model combining the features should be 
investigated.  
The PID satisfies the following relationships (Williams 
and Beer, 2010) for the joint mutual information (jMI), 
conditional mutual information (CMI)  and co-
information (co-I) respectively (Cover and Thomas, 
1991; Ince et al., 2017), where P1, P2 represent the 
predictions from two different models and D represents 
the held-out data they are predicting.  
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This demonstrates that CMI should not be interpreted 
as the unique contribution of one source, because it 
includes also the synergy between the sources. 
Similarly, co-I combines redundancy and synergy 
quantifying the net interaction effect. 
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Results 

Gaussian system Figure 1 shows results for a tri-
variate Gaussian system where each model prediction 
has a correlation of 0.5 with the hold-out target data. 
Variance and information decompositions are plotted as 
a function of the correlation between the model 
predictions. i.e. p=1 means both models predict exactly 
the same value on every trial, p=0 means the model 
predictions are uncorrelated. Note that commonality 
looks very similar to the information theoretic co-I, which 
conflates redundancy and synergy (blue lines). Unique 
variance (semi-partial correlation) looks very similar to 
CMI (yellow lines), which again conflates unique 
information and synergy. Therefore, this suggests that 
commonality analysis is also unable to separate 
redundant and synergistic effects, and therefore cannot 
accurately quantify the unique predictive power of a 
model. Further, this suggests that negative common 
variance terms, may, like negative co-I, reflect 
synergistic relationships. In commonality analysis these 
negative commonality terms are often taken to indicate 
the presence of a mediating ‘suppressor’ variable (Ray-
Mukherjee et al., 2014), although in neuroimaging some 
authors employ ad-hoc corrections to them (Heer et al., 
2017).  

Figure 1: Classical information theoretic measures, 
Commonality analysis and PID results for a Gaussian 
system with equal model prediction performance (𝜌 =
0.5) as a function of the correlation of the model 

predictions 𝑝. Due to the symmetry of the system there 
is equal unique in each predictor. 

 
Auditory MEG Encoding Models During Speech 
Figure 2 shows results of comparisons of models 
predicting auditory cortex responses to speech with 
ridge regression over a range of non-linear auditory 
feature sets. Close to 100% redundancy between 
predictions based on features consisting of the 
spectrogram and its rectified derivative (Sg&Deriv) and 

the benchmark oracle model (Kriegeskorte and 
Douglas, 2018) based on phonetic features (Di Liberto 
et al., 2015) was observed. This indicates that the 
tested model captures all the predictive power of the 
benchmark model. The unique information shows that 
while the benchmark model has no unique predictive 
power, the tested Sg&Deriv model does have unique 
predictive information.  

 
Figure 2: Comparing MEG encoding models with the 
PID. A range of models based on different features 
spaces are compared to a benchmark model. Left 

shows redundancy (normalized to predictive 
information of benchmark model). Right shows unique 

information in tested model and benchmark model 
(red). Data points are from different cross-validation 
outer folds and participants. Data and analysis from 

Daube et al., 2019. 
 

Interpreting decoding models with the PID 
While the interpretational differences between encoding 
and decoding models have been described (Ahissar et 
al., 1997; Holdgraf et al., 2017; Kriegeskorte and 
Douglas, 2018; Naselaris et al., 2011; Weichwald et al., 
2015), it remains tempting to interpret strong decoding 
of a high-level stimulus feature (e.g. phoneme class) as 
a signature of a processing stage that operates on that 
feature (e.g. pre-lexical abstraction) (Khalighinejad et 
al., 2017). However, the decoding performance could 
occur as a side-effect of low-level differences between 
the decoded high-level features. Using PID model 
comparison this can be tested explicitly, by applying 
PID with two sources: measured data, and hold-out 
predictions of a low-level feature model. If it is possible 
to decode the high-level feature from the predictions of 
the low-level feature model, and, crucially, this 
decoding is redundant with the decoding performed on 
the measured data, then this is strong evidence that the 
high-level decoding is an epiphenomenon of a low-level 
sensory encoding (Daube et al., 2019). 
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Conclusions 
The partial information decomposition has received 
much recent interest, as it invites a reinterpretation of 
classical information theoretic quantities. In particular, 
co-information and conditional mutual information need 
to be reconsidered in light of the fact that these 
measures also quantify synergistic effects. In model 
comparisons, a zero value of co-information (similarly 
common variance) thus does not mean there is no 
overlapping prediction between the models, because 
redundant predictive effects could be cancelled out by 
different but equally strong synergistic effects. A high 
CMI does not mean one model conveys unique 
predictive information, because it may reflect synergy. 
PID provides a promising approach to perform 
systematic model comparison while accounting for 
these potential confounds, which also affect variance 
partitioning methods. PID can be applied as a second-
level analysis to compare and interpret predictive 
encoding and decoding models, as well as models of 
representational similarity.  
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