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Abstract
When should an intelligent agent encode and retrieve
episodic memories? In this work, we use a memory-
augmented neural network to study how episodic mem-
ory can be most effectively deployed in the service of
event understanding. Events are generated from underly-
ing situation models and situations sometimes re-occur,
making it useful to have an episodic memory system that
can store and retrieve these situation models. For re-
trieval, our model learned to wait adaptively to accumu-
late information to ensure accurate retrieval of the target
memory. Additionally, model variants that stored episodic
memories at event boundaries (but not mid-event) had
better subsequent recall performance. This latter result
provides a normative explanation of the finding (from hu-
man fMRI) that the hippocampus is differentially engaged
at event boundaries.
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When should we encode and retrieve episodic
memories?

A fundamental challenge for models of episodic memory is
understanding when encoding and retrieval should take place.
In tasks that are specifically focused on memory (e.g., learn-
ing and recalling lists of randomly selected words), it is clear
when encoding and retrieval should occur: Words need to be
encoded during the list-learning phase and retrieved at test.
However, in most real-life situations, where we are simply try-
ing to understand and predict events as they unfold in a con-
tinuous fashion, it is less clear when to encode and retrieve
episodic memories. Recent fMRI studies provide suggestive
evidence that retrieval and encoding do not unfold uniformly
over time. With regard to retrieval: In a recent fMRI study
by Chen et al. (2016), participants viewed a two-part movie.
For some participants, there was a one-day gap in between
the two parts, so – at the beginning of the second part –
participants had to retrieve the information from the first part
to understand what would happen next. Participants in this
condition showed a transient increase in cortical-hippocampal
interaction, suggesting increased episodic recall, at the be-
ginning of the second part of the movie (Chen et al., 2016).
With regard to encoding: Multiple recent fMRI studies have
found that, when humans are viewing naturalistic movies, hip-
pocampal activity tends to peak specifically at event bound-
aries (Baldassano et al., 2017; Ben-Yakov & Henson, 2018).
The size of these peaks was found to be correlated with sub-
sequent memory for the just-completed event (Ben-Yakov, Ru-
binson, & Dudai, 2014; Baldassano et al., 2017; Silva, Baldas-

sano, & Fuentemilla, 2019). While suggestive, these fMRI re-
sults only loosely constrain computational models of episodic
memory. There is a strong need for more detailed modeling
work addressing this issue of when to store and retrieve mem-
ories, so we can both explain these findings and also make
more detailed predictions.

A model of cortical-hippocampal interaction
We propose that, during event processing, the cortex actively
maintains a situation model (Radvansky & Zacks, 2017) in
its distributed pattern of neural activity. This situation model
is composed of features of the observed events (e.g. “loca-
tion = a house”, “person” = “Alice”, “mood = happy”, ...) that
are useful for predicting what will happen next. Episodic en-
coding in the model corresponds to storing a ”snapshot” of
the pattern of cortical activity that represents the situation.
Later, cortex can use partial information observed from events
to retrieve previously-stored situation models from the hip-
pocampus. For example, if the cortical pattern represents
{“location = a house”, “person” = “Alice”}, this might trigger
hippocampus to recall a previously-seen situation: {“location
= a house”, “person” = “Alice”, “mood = happy”}. If the re-
trieved situation matches the current situation, this will lead to
an increase in accurate prediction. Conversely, if a mismatch-
ing situation is retrieved, this can reduce predictive accuracy.

Cortex is implemented as a long short-term memory
(LSTM) network, which is a recurrent neural network with gat-
ing mechanisms. During event processing, it maintains the
ongoing situation in its recurrent activity. Moreover, this net-
work dynamically controls the parameters of the hippocampal
network (described below).

Hippocampus uses the leaky, competing accumulator
(LCA) model (Usher & McClelland, 2001)1 to represent
episodic memories as a set of leaky evidence accumulators
with mutual inhibition (Fig. 1 B). The levels of leak, mutual
inhibition, and input strength are controlled by the cortex. Re-
trieval is content-based: At time t, input to the LCA is pro-
portional to the cosine similarity between the current cortical
pattern and the stored cortical patterns corresponding to each
unit; the outputs of the LCA correspond to the “recall strength“
of each stored memory; these values are used as weights on
stored memories to form the retrieved pattern (see Algorithm
1). Encoding a cortical pattern corresponds to forming a new
node in the LCA that is tuned to that cortical pattern (Fig. 1 B).
As different memories have non-overlapping representations,
this approximates pattern separation.

1The LCA captures many important characteristics of memory re-
trieval. For example, see Polyn, Norman, and Kahana (2009).
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Figure 1: Model architecture. A) A model with a cortex, imple-
mented as a LSTM, and hippocampal episodic memory, im-
plemented as a leaky, competing accumulator (LCA) model.
B) Retrieval in the LCA is controlled by the LSTM via θt ; en-
coding corresponds to forming a new LCA node.

Algorithm 1: cortical-hippocampal interaction at time t
Input : Current event st , previous cell state, ct−1
Output: Predicted next event ŝt +1

1 The LSTM control LCA parameters θt , specifying input
strength, leak and competition

2 Run LCA process with ct ,θt to get recall strength, w
3 Compute the retrieved item mt = w>M, a weighted

combination of all memories
4 Update LSTM cell state ct ← ct +mt
5 If encode: Add a LCA node tuned to the features of ct

Events as samples from a generative model
We represent event sequences as samples generated from an
event schema, represented as a graph (Fig. 2 A). Each node
on the graph is an event (e.g. Alice enters a house), and the
edges represent event transitions. To generate an sequence,
we first randomly sample a situation, or a set of feature-value
pairs, such as {“location = a house”, “person” = Alice , “mood
= happy”, ...}, which defines a path on the graph. Each transi-
tion on the graph (what happens next) is controlled by a partic-
ular feature of the situation. Thus, knowing the feature values
makes it possible to predict what will happen next.

Recall/no-recall task : At time t, the model needs to pre-
dict the next event. The task has two phases (Fig. 2 B): Dur-
ing the encoding phase, the model sees k event sequences,
sampled from the event graph. During the retrieval phase,
we flush the cortical activity of the model. Then with p = .5,
we present a previously-seen event sequence with a different
order. We call this a recall trial (e.g. Fig. 2 D), because re-
trieving the target memory can help with event prediction; Oth-
erwise, we present a new sequence. We call this a no-recall
trial, because none of the stored memories are relevant.

Learning to predict with episodic memories
After being trained on the recall/no-recall task, the model
learned to use episodic memory to predict upcoming events
(Fig. 3 A). During no-recall trials, the prediction performance
of the model linearly increases over time, because it gradually
learns the feature values of the current situation from obser-
vations. During recall trials, prediction accuracy jumps up to
near-ceiling levels early on, as a result of the model success-

Figure 2: Task / Modeling environment. A) To generate an
event sequence, we randomly sample a “situation”, which de-
fines a path on the event graph. B) A demo of a recall trial,
where a previously-seen situation re-occurred; in this case,
retrieving the target episodic memory helps event prediction.

fully recalling the target memory and avoiding recall of lures
(i.e., memories from unrelated events; Fig. 3 B).

Note the model learns to retrieve early in the sequence, but
retrieval drops off later in the sequence (Fig. 3 B). The early
peak in retrieval occurs because the model has a lot to gain (in
terms of improved prediction) from retrieving stored episodes
relatively early in the sequence. Later in the sequence, the
model has been given a chance to observe more features of
the situation directly, and there are fewer features left over that
need to be ”filled in” from memory. Thus, there is less to gain
from retrieval, and possibly something to lose, as the model
runs a risk of displacing its representation of directly-observed
features with (potentially noisy) features from memory. In re-
sponse to this, the model has learned to ”shut down” retrieval
later on. This provides a potential explanation of the afore-
mentioned result from Chen et al. (2016), showing a transient
peak in cortical-hippocampal interaction shortly after the re-
sumption of an interrupted movie – right after the resumption,
there is much to be gained from retrieval, but less so later on
(when the participant is better-oriented).

Evidence accumulation during retrieval
Episodic retrieval is an evidence accumulation process, which
exhibits a speed-accuracy tradeoff. Concretely, the model
should retrieve as early as possible to improve its predictions,
but retrieving too early in an event sequence is error-prone,
since the model has not yet received enough information to re-
liably identify which stored episodic memory (if any) matches
the current situation. This tension between ”need to predict”
(pulling recall earlier) and ”risk of error” (pushing it later) sug-
gests that it should be possible to push around the optimal
time of recall by manipulating prediction demands. Specifi-
cally, if we give the model a ”grace period” where it can ob-

Error bars for all figures indicate 3 standard errors.
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Figure 3: Model behavior on the recall/no-recall task. A) Pre-
diction accuracy is higher for recall trials, demonstrating that
the model learned to use episodic memory to support event
prediction; the dashed line represents the expected perfor-
mance if the model has no memory. B) Target memories are
more activated than lures.

serve features of the situation without having to make predic-
tions (and risk being wrong), the optimal policy is to accumu-
late information and suppress retrieval until the grace period
expires and the model is forced to predict.

To test if the model can learn to wait adaptively, we trained
models in environments where there is no prediction demand
for the first few time steps. In this case, the peak of tar-
get memory activation moved to later time points and peaked
again once the model was forced to predict (Fig. 4 A). Mecha-
nistically, the cortical network achieved this by modulating the
leak value of the LCA, which governs the retrieval process of
the hippocampal network. Decreasing leak makes episodic
retrieval easier, so a negative deflection in leak facilitates re-
trieval. When prediction demand is delayed, the negative de-
flection in leak moved to later time points (Fig. 4 B). In this
experiment, the model is configured to encode memories only
at event boundaries, which is justified in the next section.

This result shows that the model can flexibly balance be-
tween speed and accuracy during retrieval. Moreover, this
leads to a testable prediction that (in people) retrieval should
be modulated by prediction demand. That is: Episodic re-
trieval should only occur when it is needed to support predic-
tions; otherwise, the person is better off waiting and accumu-
lating more information, which will help them better specify
which memories are (and are not) relevant.

Encoding memories at event boundaries
benefits subsequent retrieval

As noted earlier, recent studies suggest that event bound-
aries play a special role in event storage: Hippocampal re-

Figure 4: The model learned to accumulate information to en-
sure correct retrieval when prediction demand is delayed in
time. A) The activation (recall strength) of the target memory.
B) The leak value (a LCA parameter controlled by the corti-
cal network) over time. Smaller leak values indicate stronger
retrieval.

sponse peaks tend to align with subjectively annotated event
boundaries (Baldassano et al., 2017; Ben-Yakov & Henson,
2018), and these peaks predict subsequent recall of the just-
completed episode (Ben-Yakov et al., 2014; Baldassano et al.,
2017; Silva et al., 2019). However, current theories do not pro-
vide a normative account of why encoding should be specific
to event boundaries (vs. also occurring within events).

To address this question, we used the model to compare
two different encoding strategies (illustrated in Fig. 5 A): i)
encoding at event boundaries, where the cortical state is
stored at the end of the sequence, but not beforehand; ii) cu-
mulative encoding, which stores the cortical state at the end
of the sequence, but also at regular intervals beforehand.

We found that encoding (only) at event boundaries leads
to the best subsequent event prediction performance on the
recall/no-recall task (Fig. 5 C). The suboptimal performance
of the cumulative encoding model results from storing episodic
memories at sub-event level; these ”incomplete” memories in-
crease susceptibility to false recall caused by partial match-
ing. Consider the toy example in Fig. 5. During the encod-
ing phase, the model sees an event sequence: {“location = a
house”, “weather = sunny”, “mood = happy”}. Later, the model
observes a second, partially-overlapping sequence: {“mood =
sad”, “location = a house”, “weather = rainy”}. If the first se-
quence was stored as a single, complete memory, the model
will successfully avoid recalling the first situation during the
second sequence, as the very first observation {“mood =
sad”} mismatches the content of the stored memory. Now,
consider what happens if – in addition to storing the com-
plete memory – the model also stored an incomplete mem-
ory of the first sequence at the subevent level: {“location = a
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Figure 5: Encoding event sequences in a single episodic
memory enhances mismatch detection. A) The resulting
memory chunks under the two encoding regimes; B) Storing
incomplete chunks at the sub-event level can cause subse-
quent false recall (boxed in red). When the model has par-
tial knowledge about the current situation (e.g. “location” = “a
house”, “mood = sad”), lures are easier to reject if all informa-
tion is connected. C) Models that encoded episodic memories
at the end of an event (and not before) had better event pre-
diction performance.

house”, “weather = sunny”} (Fig. 5 B, red box). This incom-
plete memory can not be rejected based on mismatch, hence
the model might recall it and wrongly predict that the weather
will be sunny. Thus, encoding at event boundaries (but not
beforehand) facilitates target-lure disambiguation during sub-
sequent retrieval, which (in turn) benefits event prediction.

Conclusion

We proposed that during event processing, the cortex actively
maintains a situation model of the ongoing events, and the
hippocampus stores and retrieves these situation models. We
instantiated this idea as a memory-augmented neural network
and showed how the cortex can learn to interact with the hip-
pocampus and leverage episodic memories to support event
prediction. In particular, our simulations showed that i) during
retrieval, cortex learns to adaptively trade off between waiting
to accumulate information about the current situation versus
retrieving episodic memories to support event prediction; ii)
encoding at event boundaries produces event memories with
a more complete specification of the features of the situation,
which makes target-lure disambiguation easier during subse-
quent retrieval.

Our results may have useful implications for machine learn-
ing (ML). Memory-augmented neural networks are being used
increasingly often in ML research (Pritzel et al., 2017; Ritter et
al., 2018). Our simulations show that – for sequential predic-
tion tasks like the one modeled here – optimizing the timing of

encoding can lead to substantial performance benefits.
In the future, we would like to extend these principles

of event memory to more realistic environments, where
event sequences have hierarchical structure spanning multi-
ple timescales, and are generated by multiple event schema
that are potentially compositional and non-stationary. Also, a
key limitation of this work is that – while we demonstrated bet-
ter performance when encoding was limited to event bound-
aries – the model did not learn when to encode on its own.
We are presently extending the model with a reinforcement
learning objective to optimize encoding policy.
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