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Abstract

What limits our ability to find what we are looking for
in the cluttered noisy world? To investigate this, cogni-
tive scientists have long used visual search. In spite of
hundreds of studies, it remains unclear how to relate ef-
fects found using the discrete item display search task
to computations in the visual system. A separate thread
of research has studied the visual system of humans
and other primates using convolutional neural networks
(CNNs) as models. Multiple lines of evidence suggest
that training CNNs to perform tasks such as image clas-
sification causes them to learn representations similar to
those used by the visual system. These studies raise the
question of whether CNNs that have learned such repre-
sentations behave similarly to humans performing other
vision-based tasks. Here we address this by measur-
ing the behavior of CNNs trained for image classification
while they perform the discrete item display search task.
We first show how a fine-tuning approach often used to
adapt pre-trained CNNs to new tasks can produce models
that show human-like limitations on this task. However
we then demonstrate that we can greatly reduce these ef-
fects by changing training,without changing the learned
representations. Lastly we show that accuracy is not im-
paired when single networks are trained to discriminate
multiple types of visual search stimuli. Based on these
findings, we suggest that CNNs are not necessarily sub-
ject to the same limitations as the primate visual system.
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Introduction

What limits our ability to find what we are looking for in the
cluttered noisy world we see around us? One of the principle
tasks that has been used to investigate this question is a vi-
sual search task (Figure 1) (Wolfe, 1998a) we will refer to as
the discrete item display search task. Most studies using this
task experimentally manipulate factors such as features of the
targets and distractors in order to identify those factors that
limit visual search (Eckstein, 2011; Wolfe & Horowitz, 2017),
known as capacity limitations. There are essentially two mod-
els of capacity limitations: attention-limited and noise-limited
models (E. M. Palmer et al., 2011). Briefly, we review these
and describe how they depend in part on the way the visual
search task is performed. Both models depend on what are
known as set-size effects seen when using visual search stim-
uli, depicted schematically in 1b). Attention-limited models
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Figure 1: The discrete item display search task. On each
trial, subjects view a display (example images, a) of discrete
items on a flat background. Subjects respond whether the tar-
get is present or absent (condition varies across rows of a).
Another condition that varies across trials is the set size, that
is, the total number of targets and distractors (varies across
rows in a). Many studies focus on set size effects. Typi-
cal effects are an increase in reaction time or a decrease in
accuracy as set size increases (depicted schematically in b,
redrawn from (Wolfe et al., 2010) and (Eckstein, 1998)). Ef-
fects vary based on the features that distinguish targets from
distractors (shown in columns). Details in introduction. Accu-
racy for spatial configuration-type stimuli not shown in b be-
cause this has been less studied (but see (E. M. Palmer et al.,
2011)).

posit two-stage theories of visual processing, a first preatten-
tive stage which can process single features such as color or
orientation in parallel, and a second attentive stage which re-
quires a serial computation to binds features, resulting in a
bottleneck (Treisman & Gelade, 1980; Wolfe, Cave, & Franzel,
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1989; Wolfe, 1994). Evidence for this theory came from vi-
sual search experiments where subjects were shown stim-
uli until responding, and their reaction time was measured.
Plotting reaction time as a function of set size revealed lines
whose slope were near zero (1b, top row, left plot) when a
single feature distinguished the target from distractors (1, a,
left column). The slope of reaction time versus set size in-
creased though (1b, top row, middle plot), when distinguish-
ing the target from distractors required finding a conjunction
of features (1a, middle column). Slopes became even steeper
(1b, top row, right plot) when targets and distractors shared
features and could only be distinguished by their spatial con-
figuration (1a, right column). This sort of set size effect has
been replicated hundreds of times, although it remains un-
clear why some search stimuli are processed effectively in
parallel while others face a bottleneck (Wolfe, 1998b; Wolfe
& Horowitz, 2017). The second family of capacity limitations
conceives of visual search as completely parallel but noisy.
These models arose in large part in reaction to the way the
visual search task was carried out when investigating serial
mechanisms. Early studies that measured reaction times left
several factors uncontrolled, such as target-distractor simi-
larity (Duncan & Humphreys, 1989), drops in acuity outside
the fovea, eye movements, and effects resulting from visual
crowding (Eckstein, 1998). Hence researchers designed ver-
sions of the visual search task that controlled for such factors.
Crucially, they showed subjects the stimulus only briefly, to
prevent eye movements, and measured accuracy instead of
reaction time (shown schematically in 1b, bottom row). Com-
putational models of parallel mechanisms, based on signal
detection theory, successfully explained results from feature
and conjunction search stimuli (1a, left and middle columns)
(J. Palmer, Verghese, & Pavel, 2000; Eckstein, 2011).

In spite of nearly half a century of studies based on the
discrete item display search task, this core question remains
unresolved: to what extent can limitations be attributed to an
attention-like computation, e.g. binding features into items,
and to what extent can those limitations be attributed to other
computations, e.g. a decision-making process subject to noisy
internal representations? To foreshadow our approach, we
suggest another way of posing this question: if some algo-
rithm could produce a statistical model capable of learning
from data to classify visual search stimuli as target present or
absent with high accuracy, would that accuracy still be subject
to some ceiling, due simply to the constraints of the task? This
framing bears some similarity to a well-established framework
in vision research known as ideal observer analysis (Geisler,
2003). However, few ideal observer models have taken the
form of "pixel-in, behavior-out”, and therefore do not general-
ize to many different types of visual search stimuli, so their
predictive power is limited (Geisler & Cormack, 2011).

Both attention-limited and noise-limited models are highly
abstracted models of the visual system, in which low-level
features pass through a hierarchy until reaching a final stage
consisting of a simple decision rule. Similarly, the architec-
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ture of convolutional neural networks (CNNs) now routinely
used for computer vision tasks represents a highly abstracted
view of the visual system. Many researchers have drawn par-
allels between the architecture of CNNs and the architecture
of the visual system in the brain (Kriegeskorte, 2015), in par-
ticular in humans and other primates where this system has
been most thoroughly studied. Like CNNs, the visual sys-
tem has a hierarchical structure, and is thought to function
in part by performing transformations at each level of this hier-
archy so that high-dimensional, low-level features are mapped
into low-dimensional abstract representations. Several recent
studies have found that that, when optimized to perform tasks
such as image classification, CNNs learn representations sim-
ilar to those observed in the visual system (D. L. K. Yamins
& DiCarlo, 2016; D. L. Yamins et al., 2014). These studies
raise the question of whether CNNs that have learned such
representations behave similarly to humans performing other
vision-based tasks. Here we address this by measuring the
behavior of CNNs trained for image classification while they
perform the discrete item display search task. While there
have been previous studies of neural networks performing vi-
sual search tasks, we are aware of only one study (Poder,
2017) that employed the sort of CNN architectures used in
studies of the visual system referenced above. We replicate
the methods from that study, and extend that author’s results.
In the interest of replicability, we have made the code and
summary results ' available, and will release the raw data
upon publication 2.

Results

As referenced above, previous work suggests that optimiz-
ing CNNs to perform image classification causes them to ac-
quire representations which resemble those that can be iden-
tified in the brain. We first tested whether the CNN architec-
ture AlexNet (Krizhevsky, Sutskever, & Hinton, 2012) would
be subject to human-like limits on the discrete item display
search task, when utilizing representations learned by opti-
mizing the weights for image classification on the ImageNet
dataset (Deng et al., 2009). To do so, we used a fine-tuning
approach, in which we used pre-trained weights in earlier con-
volutional layers of AlexNet, but randomly initialized weights
in the later fully-connected layers (Yosinski, Clune, Bengio, &
Lipson, 2014). More specifically, we replicated the training
method described in (Poder, 2017), where we trained each
network that we tested with 6400 samples of one of the visual
search stimuli (e.g. feature search), and then measured ac-
curacy on a separate test set of 800 samples. Stimuli were
generated with a small Python package ° which produced
images the same size as the images used to train on Ima-
geNet, and were pre-processed in the same way as those im-
ages, except that no re-sizing was done. This training method
produced AlexNet models whose accuracy showed set-size

'https://github.com/NickleDave/visual-search-nets
2at https://figshare.com/articles/visual-search-nets/7688840
3https://gi'(hub.com/NickIeDave/searchstims
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Figure 2: Human-like limits on accuracy of CNNs perform-
ing the discrete item display search task As described in
the text, when using weights pre-trained on ImageNet in con-
volutional layers, and fine-tuning weights in fully-connected
layers so AlexNet could perform the task, this CNN showed
decreases in accuracy as set size increased (a). This de-
crease was smallest for feature search stimuli (left plot), in-
termediate for conjunction stimuli (middle plot), and largest for
spatial configuration stimuli (right plot). The same approach
produced similar results with the VGG16 architecture (b).

dependence similar to human subjects (Figure 2a). For the
three types of visual search stimuli that we used, there was a
set size effect, where accuracy decreased as the set size in-
creased. This effect was smallest for feature search (left col-
umn), slightly larger for conjunction search (middle column),
and largest for spatial configuration search. To test whether
this effect was unique to AlexNet, we also used the same ap-
proach with the VGG 16 architecture, and produced similar re-
sults (Figure 2b). In addition to finding set size effects that
were qualitatively similar to those seen in human subjects, we
also noted that accuracy was always higher for the "target ab-
sent” condition. We do not find reports of similar differences
between target present and target absent conditions in human
subjects.

Because accuracy of CNNs depends in part on training, it
could be the case that the results just described are an arti-
fact of how we trained the networks. To gain insight into how
our results depended on training, we plotted training histo-
ries where we measured accuracy on the training set at each
epoch separately for each set size in the visual search stim-
uli. These plots revealed (1) that accuracy had not yet ap-
proached some asymptotic value by the end of training, and
(2) that there was an inverse relationship between the set size
of a visual search stimulus and the rate that its accuracy in-
creased, e.g. accuracy on set size 1 reached its highest value
within a few epochs, while accuracy on set size 8 never con-
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Figure 3: Changing training greatly reduces set size ef-
fects. Training histories showed that the accuracy of mod-
els trained with the fine tuning approach did not converge on
some asymptotic value, and varied depending on the set size
of the search stimuli (a, left plot). Increasing the learning rate
and including more examples of stimuli with larger set sizes
greatly sped up convergence (a, right plot). AlexNet models
trained with this higher learning rate and larger training set
showed reduced set size effects (b).

verged on an asymptotic value (figure 3a). Because these
plots showed accuracy had not converged when we stopped
training, we used random search to find an optimal learning
rate, a key hyperparameter. We did find we were able to im-
prove accuracy and decrease training time by using a typi-
cal learning rate on the fully-connected layers, while simply
freezing the pre-trained weights in earlier convolutional lay-
ers. Based on the the observation that different set sizes con-
verged at different rates, we also augmented the number of
samples for larger set sizes. It may seem counterintuitive to
“unbalance” the dataset this way, until one considers that there
are many more combinations of displays of set size 8 then of
set size 1. For example, if items are located on a 5-by-5 grid,
then for set size 1 there are 25-pick-1 combinations, i.e. 25,
while for set size 8 there are 25-pick-8 combinations (approx-
imately 100k). (Note that the library we used to generate im-
ages ensures that there are no repeats; for set size 1, jitter is
added to produce more than 25 possible displays; this is typ-
ically done in experiments with human subjects, and acts as
a form of data augmentation for neural networks.) We simply
multiplied the number of samples by the set size, since scaling
by the number of possible combinations would have produced
prohibitively large datasets. After making these changes to
the learning rate and the statistics of the dataset, we saw that
the set size effects were greatly reduced 3b. This indicates
that these effects are due in least at part to how we trained
the networks.

Because neural networks, including CNNs, act as function
approximators, it could also be the case that they were able



to perform the discrete item display search task with relatively
high accuracy simply by learning an exclusive-or function for
the single search stimulus that we trained them to classify. A
more rigorous test would be to train single networks to classify
multiple stimuli, in the same way that humans do in discrete
item display search experiments. As a final test, we trained
two instances of Alexnet on very large datasets containing all
three stimuli used in this study 4. We found similar accuracy
as shown in 3, even when single networks were challenged to
perform this task with multiple stimuli.

accuracy
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Figure 4: Training single networks on multiple stimuli
does not impair accuracy Two instances of AlexNet trained
on datasets containing all three types of visual search stimuli
used in this study still attained high accuracy.

Discussion

We tested whether CNNs using representations learned from
image classification tasks would be subject to human-like ca-
pacity limitations when performing the discrete item display
search task. While we did not find that CNNs can always per-
form the discrete item display search task with perfect accu-
racy, we did show that these models are not necessarily lim-
ited by the same factors as the primate visual system.
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