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Abstract

Do brains compute? How do brains learn? How are in-
telligence and language achieved in the human brain? In
this pursuit, we develop a formal calculus and associated
programming language for brain computation, based on
the assembly hypothesis, first proposed by Hebb: the ba-
sic unit of memory and computation in the brain is an
assembly, a sparse distribution over neurons. We show
that assemblies can be realized efficiently and neuroplau-
sibly by using random projection, inhibition, and plastic-
ity. Repeated applications of this RP&C primitive (random
projection and cap) lead to (1) stable assembly creation
through projection; (2) association and pattern comple-
tion; and finally (3) merge, where two assemblies form a
higher-level assembly and, eventually, hierarchies. Fur-
ther, these operations are composable, allowing the cre-
ation of stable computational circuits and structures. We
argue that this functionality, in the presence of merge
in particular, might underlie language and syntax in hu-
mans.
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Introduction

How does the mind emerge from the brain? How do
molecules, neurons, and synapses orchestrate cognition, be-
havior, intelligence, reasoning, language? The remarkable
and accelerating progress in neuroscience, both experimen-
tal and theoretical-computational, does not seem to bring us
closer to the answer, and a new conceptual framework seems
to be needed. As Richard Axel recently put it (A, 2018) “We
do not have a logic for the transformation of neural activity into
thought and action. I view discerning [this] logic as the most
important future direction of neuroscience”.

What kind of formal system, abstracting the realities of neu-
ral activity, would qualify as the sought “logic”? This is the
question pursued in this work.

We propose a formal computational model of the brain
based on assemblies of neurons, occupying a position inter-
mediate, in terms of detail and granularity, between the level
of individual neurons and synapses, and the level of the whole
brain models useful in cognitive science, e.g. (Lake, Salakhut-
dinov, & Tenenbaum, n.d.). We call this system the Assembly
Calculus. The basic elementary object of our system is the as-
sembly of excitatory neurons. Assemblies were first hypothe-
sized seven decades ago by Donald O. Hebb (Hebb, 1949) as

densely interconnected sets of neurons whose loosely syn-
chronized firing in a pattern is coterminous with the subject
thinking of a particular concept or idea. Assembly-like forma-
tions have been sought by researchers during the decades fol-
lowing Hebb’s prediction, see for example (Abeles, 1991), until
they were clearly identified more than a decade ago through
calcium imaging (Harris, 2005; Buzsaki, 2010). More recently,
assemblies (sometimes called ensembles) and their dynamic
behavior have been studied extensively in the animal brain,
see for example (Miller, Ayzenshtat, Carrillo-Reid, & Yuste,
2014).

Our calculus outfits assemblies with certain operations that
create new assemblies and/or modify existing ones: project,
reciprocal-project, associate, merge, and a few others. These
operations reflect known properties of assemblies observed
in experiments, and they can be shown, either analytically or
through simulations (almost always both), to result from the
activity of neurons and synapses. In other words, the high-
level operations of this system can be “compiled down” to the
world of neurons and synapses — a fact reminiscent of the
way in which high-level programming languages are translated
into machine code.

Mathematical Model

Our mathematical and simulation results employ a simplified
and analytically tractable, yet plausible, model of neurons and
synapses, which we believe may be of broader interest and
use. We assume a finite number of brain areas denoted
A,B,C, etc., intended to stand for an anatomically and func-
tionally meaningful partition of the cortex. Each area contains
n excitatory neuronswith random recurrent connections. By
this we mean that each ordered pair of neurons in an area
has the same small probability p of being connected by a
synapse, independently of what happens to other pairs — this
is a well studied framework usually referred to as Gn,p (Erdős
& Renyi, 1960). In addition, for certain ordered pairs of areas,
say (A,B), there are random afferent synaptic interconnec-
tions from A to B; that is, for every neuron in A and every
neuron in B there is a chance p that they are connected by
a synapse.1 Our analytical results establishing the effective-
ness of the various operations contain the clause “with high
probability,” where the event space is implicitly the underlying

1Several experimental results (Song, Sjöström, Reigl, Nelson, &
Chklovskii, 2005; Guzman, J Schlö gl, Frotscher, & Jonas, 2016) sug-
gest deviations of the synaptic connectivity of the animal brain from
the uniformity of Gn,p. Such deviations mostly support our results,
albeit in ways we are not discussing here.
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random graph. We assume that all cells in an assembly x be-
long to the same brain area, denoted area(x).

We assume multiplicative Hebbian plasticity: if at a time
step neuron i fires and at the next time step neuron j fires,
and there is a synapse from i to j, the weight of this synapse
is multiplied by (1+β), where β > 0 is the final parameter of
our model (along with n, p, and k). Larger values of the plastic-
ity coefficient β result in the operations converging faster, and
render many of our proofs simpler. The plasticity process is
complemented by homeostasis, namely, the incoming synap-
tic weights at a neuron are normalized over a larger time scale
to maintain their sum constant. Finally, we model inhibition
and excitatory–inhibitory balance by postulating that neurons
fire in discrete time steps, and at any time only a fixed number
k of the excitatory neurons in any area fire.

The four basic parameters of our model are these: n (the
number of excitatory neurons in an area, and the basic pa-
rameter of our model); p (the probability of recurrent and
afferent synaptic connectivity); k (the maximum number of
firing neurons in any area); and the plasticity coefficient β.
Typical values of these parameters in our simulations are
n = 107, p = 10−3,k = 104,β = 0.05. We sometimes assume
that k is (a small multiple of) the square root of n; this ex-
tra assumption seems compatible with experimental data, and
yields certain interesting further insights.

Remark: Our model is generic in the sense that it is not
assumed that circuits specific to various tasks are already
in place. Its functionality — the needed apparatus for each
task such as implementing an assembly operation — emerges
from the randomness of the network and the selection of the
k neurons with highest synaptic input as an almost certain
consequence of certain simple steps — such as the repeated
firing of an assembly.

Assembly Operations

1. Projection How do assemblies in the association cortex
come about? It has been hypothesized (see e.g. (Quiroga,
2016)) that an assembly imprinting, for example, a familiar
face in a subject’s medial temporal lobe (MTL) is created by
the projection of a neuronal population, perhaps in the infer-
otemporal cortex (IT), encoding this face as a whole object.
By projection of an assembly x in area A we mean the cre-
ation of a new assembly y in a downstream area B that can be
thought of as a “copy” of x, and such that y will henceforth fire
every time x fires — an operation denoted project(x,B,y).
The process was vividly predicted in the discussion section
of (Franks et al., 2011) for the case in which A is the olfac-
tory bulb and B the piriform cortex, the process entails the
repeated firing of x. Once x has fired once, synaptic con-
nectivity from area A to B excites many neurons in area B.
Inhibition will soon limit the firing in area B to a smaller set
of neurons, let us call it y1, consisting in our framework of k
neurons. Now, the simultaneous firing of x and y1 creates a
stronger excitation in area B (one extra reason for this is plas-
ticity, which has already strengthened the connections from x

to y1), and as a result a new set of k neurons from area B will
be selected to fire, call it y2. If x continues firing, a sequence
{yt} of sets of neurons of size k in area B will be created. For
a large range of parameters and for high enough plasticity, we
have proved this process to converge exponentially fast, with
high probability, to create an assembly y, the result of the pro-
jection, and the trade-off between the speed of convergence
and the strength of plasticity has been calculated almost ex-
actly (Papadimitriou & Vempala, 2019). Assembly projection
has also been demonstrated through neuromorphic simula-
tions (Pokorny et al., 2017; Legenstein, Papadimitriou, Vem-
pala, & Maass, 2016). Once the project(x,B,y) operation
has taken place, we write B = area(y) and x = parent(y).

Hebb (Hebb, 1949) hypothesized that assemblies are
densely interconnected — that is, the chance that two neu-
rons have a synaptic connection is significantly larger when
they belong to the same assembly — and our analysis and
simulations of the project operation verify this hypothesis.

Figure 1: Schematic of project(x,B,y).

2. Association In a recent experiment (Ison, Quiroga, &
Fried, 2015), electrocorticography (eCoG) recordings of hu-
man subjects revealed that a neuron in a subject’s MTL con-
sistently responding to a stimulus consisting of the image of
a particular familiar place — such as the Pyramids — starts
to also respond to the image of a particular familiar person —
say, the subject’s sibling — once a combined image has been
shown of this person in that place. A compelling parsimo-
nious explanation of this and many similar results is that two
assemblies imprinting two different entities adapt to the cooc-
currence, or other observed affinity, of the entities they imprint
by increasing their overlap, with cells from each migrating to
the other while other cells leave the assemblies to maintain its
size to k; we say that the two assemblies are associating with
one another. The association of two assemblies x and y in the
same brain area is denoted associate(x,y), with the com-
mon area area(x) = area(y) implicit. We have proved analyt-
ically that the simultaneous sustained firing of the two parents
of x and y does effect such increase in overlap (Papadimitriou
& Vempala, 2019) (this was also demonstrated through neu-
rorealistic simulations (Pokorny et al., 2017)); and also that,
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if two associated assemblies are projected to a downstream
area, the extent of their overlap is preserved (Papadimitriou &
Vempala, 2019). The association operation evokes a concep-
tion of a brain area as the arena of complex overlap patterns
between the area’s assemblies; for an analytical treatment of
this view see (Anari et al., 2018).

3. Pattern completion Pattern completion is the firing of the
whole assembly in response to the firing of a small number
of its cells, which happens with a certain a priori probability.
This phenomenon has been demonstrated both analytically
and in simulations, and has been observed in vivo (Miller et
al., 2014). We believe that association and pattern completion
open up fascinating possibilities for a genre of probabilistic
computation through assemblies, a research direction which
must be further pursued.

4. Merge The most sophisticated, and demanding both an-
alytically and in terms of brain resources, operation in the
repertoire of assembly calculus is merge(x,y,A,z), the cre-
ation of a new assembly z in area A that has strong two-
way synaptic connectivity with two other assemblies x and
y, in two different brain areas. Our algorithm for implement-
ing merge is by far the most complex in this work, as it re-
quires the coordination of five different brain areas with am-
ple connectivity between them, as well as stronger plasticity.
This is consistent with the hypothesis that merge is an oper-
ation particular to humans, and that it has possibly required
the development of new heights of neural and synaptic ca-
pabilities in the human brain, such as the lateralization and
size differentiation of the left arcuate fasciculus (Vernooij et
al., 2017). Finally, a simpler operation with similar yet milder
complexity is reciprocal.project(x,A,y): It is an exten-
sion of project(x,A,y), with the additional functionality that
the resulting y has strong backward synaptic connectivity to
x. It has been shown to be implementable through detailed
simulations of realistic networks of neurons (Legenstein et al.,
2016).

The RP&C primitive It can be said that assembly oper-
ations, as described here, are powered exclusively by two
forces known to be crucial for life more generally: randomness
and selection. No special-purpose neural circuits are required
to be in place; what is needed is random synaptic connectiv-
ity between, and recurrently within, populations, and selection
through inhibition, in each area, of the k out of n cells currently
receiving highest synaptic input. All computation consists of
applications of this operator, which we call random projection
and cap (RC&P). We believe that RP&C is an important prim-
itive of neural computation.

Control operations and computational power

Besides the operations project, associate,
pattern complete, reciprocal.project and merge, the
Assembly Calculus contains certain basic operations: read()
returns the set of all areas in which an assembly has just fired,
see (Buzsaki, 2010) for an argument that, for assemblies

to be functionally useful, readout mechanisms must be in
place. Also, we further assume that an assembly x can be
explicitly caused to fire by the operation fire(x), and that
the excitatory cells in any area A can be explicitly inhibited
and disinhibited by appropriate commands inhibit(A)
and disinhibit(A). It can be shown that the Assembly
Calculus, augmented with these control operations and under
reasonable assumptions, is capable of simulating arbitrary
O(
√

n) space-bounded computations. Significantly, the
simulation relies crucially on the use of the merge operation.
This is a remarkable computational capability, consistent with
the hypothesis, articulated next, that the Assembly Calculus
may underlie the more sophisticated functions of the human
brain.

The assembly hypothesis

The Assembly Calculus is a formal system with a repertoire
of rather sophisticated operations, where each of these op-
erations (with the exception of the control primitives, which
however are arguably also quite plausible) can be ultimately
reduced to the firing of randomly connected populations of ex-
citatory neurons with inhibition and Hebbian plasticity. The en-
suing computational power of the assembly calculus may em-
bolden one to hypothesize that this computational system —
or something far more complex and detailed, which however
can be usefully abstracted this way — may underlie advanced
cognitive functions, especially those of the human brain, such
as reasoning, planning, and language.

Language

Language is arguably the crowning functionality of the human
brain. Linguists had long predicted that the human brain is
capable of the Merge operation, that is, combining, in a partic-
ularly strong sense, two separate syntactic entities to create a
new entity representing this particular combination (Berwick
& Chomsky, 2016; Hauser, Chomsky, & Fitch, 2002), and
that this ability is recursive in that the combined entity can
in turn be combined with others. This is a crucial step in
the creation of the trees that seem necessary for the syntac-
tic processing of language, but also for hierarchical thinking
more generally (e.g., deduction, discourse, planning, story-
telling, etc.). The Assembly Calculus operations project,
reciprocal.project, and merge provide the basis for a
possible implementation of such hierarchies. In particular, we
speculate in Figure 2 with one plausible implementation of the
generation of a sentence such as “boy kicks ball,” in a man-
ner that is compatible with recent experimental results on lan-
guage in the brain, see e.g. (Frankland & Greene, 2015; Ding,
Melloni, Zhang, Tian, & Poeppel, 2016; Friedericci, 2018).
First, the words corresponding to the verb, subject and object
of the intended sentence are identified in the lexicon, presum-
ably residing in the medial temporal lobe (MTL), and are recip-
rocally projected to the subregions of Wernicke’s area (as pre-
dicted in (Frankland & Greene, 2015)) corresponding to these
three syntactic categories by reciprocal.project assem-
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bly operations (marked (1) in the figure). Such binding was re-
cently shown to be neuroplausibly implementable (Legenstein
et al., 2016). Following this step, a merge operation utilizes
the left arcuate fasciculus fiber connecting the areas of Wer-
nicke and Broca to create a “verb phrase” or VP assembly by
combining the verb and the object, see (2) in the figure. Fi-
nally, the subject is mergeed with VP to form the sentence S
(see (3) in the figure). After this bottom-up generation pro-
cess, the constituents of the resulting sentence S can next be
articulated by a top-down process, in an order that reflects the
grammar of the particular language, to eventually reach the
lexicon assemblies and activate the associated speech pro-
cesses. Even though this account disregards a host of lin-
guistic subtleties, it does illustrate the relevance of assembly
operation to language in the brain.

Figure 2: A potential architecture for syntax in the brain.
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