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Abstract 

Over recent years, multivariate pattern analysis (“decoding”) 

approaches have become increasingly used to investigate 

“when” and “where” our brains conduct meaningful 

processes about their visual environments. Studies using 

time-resolved decoding of M/EEG patterns have described 

numerous processes such as object/face familiarity and the 

emergence of basic-to-abstract category information. 

Surprisingly, no study has, to our knowledge, revealed 

“what” (i.e. the actual visual information that) our brain uses 

while these computations are examined by decoding 

algorithms. Here, we revealed the time course at which our 

brain extracts realistic category-specific information about 

visual objects (i.e. emotion-type & gender information from 

faces) with time-resolved decoding of high-density EEG 

patterns, as well as carefully controlled tasks and visual 

stimulation. Then, we derived temporal generalization 

matrices and showed that category-specific information is 1) 

first diffused across brain areas (250 to 350 ms) and 2) 

encoded under a stable neural pattern that suggests evidence 

accumulation (350 to 650 ms after face onset). Finally, we 

bridged time-resolved decoding with psychophysics and 

revealed the specific visual information (spatial frequency, 

feature position & orientation information) that support these 

brain computations. Doing so, we uncovered interconnected 

dynamics between visual features, and the accumulation and 

diffusion of category-specific information in the brain. 
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Introduction 

Recognizing a visual object requires the timely processing of 

visual information, from fine grained low-level features, to 

more abstract category-relevant information. In the recent 

years, a wealth of object recognition neuroimaging results has 

been obtained using multivariate pattern analyses 

(“decoding”) to characterize “when” and “where” our brains 

process information about specific stimuli and tasks. To 

resolve the temporal dynamics of object recognition, studies 

have applied linear classifiers to time-resolved 

Magneto/electro-encephalography (M/EEG) activity patterns 

(see Carlson et al. 2019 for a review). This decoding 

approach yielded important understandings in objects/face 

familiarity (Dobs et al. 2019), object memorability 

(Mohsenzadeh et al. 2019), the emergence of basic-to-

abstract category information (Cichy et al. 2014; Contini et 

al. 2017)  to name only but a few studies.  

 

To form a richer understanding of object categorization in the 

brain at a mechanistic level, such decoding approaches need 

to be combined with psychophysical procedures that enable 

revealing the specific content of the information that is 

available to the brain during a cognitive task. Along this line, 

a recent study using MEG and psychophysics revealed the 

processing of task-relevant information in the brain (Zhan et 

al. 2019), with increasing importance of behaviourally 

relevant information along the visual ventral stream. These 

results culminated from over a decade of work using 

psychophysical techniques similar to reverse correlation (e.g. 

see Bubbles, Gosselin and Schyns 2001) with behavioral or 

brain imaging data to decipher the specific visual information 

(e.g. “detailed” vs. “coarse” spatial frequency information) 
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underlying object (Caplette et al., 2016), scene 

(Willenbockel, Gosselin & Võ, submitted) and face (Smith et 

al. 2008) recognition. 

 

Combining tightly controlled psychophysical paradigms with 

decoding algorithms would not only provide a way to 

investigate categorical representations while characterizing 

the visual features that support information processing in the 

brain. If used properly, it would also enable neuroscientists 

to control for low-level processing interpretations behind the 

disclosed computations. Indeed, it can be a complex 

endeavour to untangle computations from low-level areas 

such as V1, which are sensitive to contrast and edge 

differences between face images from different gender, from 

decoded whole-brain information. Ultimately, even output 

from the retina could dissociate between a human face and a 

giraffe’s; the goal of a neuroscientist studying high-level 

cognition, thus, is to describe how or when category-specific 

(e.g. human vs. animal) information is implemented in the 

brain. 

Here, in an effort to bridge the gap between decoding studies 

and reverse correlation approaches, we combined diagnostic 

feature mapping —a carefully controlled psychophysical 

paradigm that reveals the features supporting recognition 

(Alink and Charest 2018)— with multivariate pattern 

analyses applied to concurrently measured EEG data. Similar 

to classical decoding approaches, we first reveal the time 

course at which our brain extracts realistic category-specific 

information about visual objects (i.e. emotion-type & gender 

information from faces). Then, we go a step further by 

revealing what visual information (spatial frequency, feature 

position & orientation information) supports category-

specific computations in the brain. 

 

Method 

Experimental procedure & stimuli 

Participants (N=5) were asked to categorize the emotion (fear 

vs. joy) or gender (male vs. female) of faces which physical 

content were partially revealed on every trial (2560 trials per 

task, per participant). More specifically, we presented 16 

expressive male/female faces that varied in feature position 

content (e.g. more left-eye information present, no mouth 

information present), spatial-frequency content (coarseness 

of the presented information) and orientation content (e.g. 

more horizontal content) in a pseudo-random fashion on 

every trial (Figure 1; see Alink & Charest, 2018). This 

ensured that computations from low-level brain areas 

sensitive to these information variations (e.g. striate cortex), 

could not help our decoding algorithms, and, conversely, that 

higher-level information would be distilled-out. Both time-

resolved brain information about emotion-type and gender 

were obtained from brains receiving this pseudo-random 

low-level visual stimulation, and the original 16 face images 

used for this stimulation were identical between tasks. Thus, 

only task instructions (“discriminate emotion”, “discriminate 

gender”) differed. 

A typical trial consisted of the following events: a fixation 

dot (with a jittered duration centered around .5s), and a 

randomly sampled face (1s) followed by the participant’s 

response. Face images were presented in a random order 

across trials. The two task-conditions were completed on two 

separate EEG recordings and lasted ~3 hours each, including 

EEG headset installation. 

 

 

Figure 1. Stimuli creation and experimental paradigm. (a) A 

face image is fitted with Gabor patches of different 

orientations (10 to 180 deg), spatial-frequencies (from 2 to 76 

cpi), [x,y] image coordinates and sizes. Only the 3k Gabors 

with the best fits (i.e. the features) are chosen to reconstruct 

an efficient version of the face image. (b) On a given trial, the 

feature vector is randomly sampled to create a stimulus. 

 

EEG recording & time resolved decoding 

Electroencephalographic (EEG) data were recorded with a 

BioSemi 128 electrodes headset at 1024 hz. EEG traces were 

down sampled to 256 Hz and band-passed filtered (.01-30hz). 

For both task-conditions, the raw EEG patterns were fed to a 

linear-discriminant classifier which task was to classify the 

category of the presented stimulus (i.e. either gender in the 

face gender discrimination task, emotion-type in the emotion 

face discrimination task). We trained and tested (5-fold cross-

validation, 5 repetitions) a different model with EEG patterns 

from every time point from -100 ms to 1000 ms in 4 ms steps, 

relative to face-onset. To assess significance, we trained and 

tested a classifier with identical parameters to categorize 

shuffled labels, repeated this step 10000 times, and compared 

our observed classification accuracy to this null-distribution 

in a time-resolved manner. 

These decoding results are presented in Figure 2a. 

Specifically, we display the time course of this category-

specific information for emotion-type (while participants 

completed the face-emotion discrimination task). It shows 

that emotion-specific information extracted by the brain from 

faces is present relatively late, starting from 272 ms (p<.01 
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points are underlined in gray; p<.001 in black), and 

culminates in a large temporal plateau around 550 ms. 

Furthermore, we observed a second informative window 

around 900ms after face onset. Traditional univariate event-

related potentials (electrodes P6 & P7 average) are overlaid 

on top of the classification time-course. A brief comparison 

suggests that the decoded information —which discarded 

most of low-level information processes due to our controlled 

visual stimulation— emerges right after face (N170) and 

attention-related processes (P200). 

Figure 2. (a) face category-specific information extracted by 

the brain is unraveled in time using a linear-classifier. (b, c) 

The specific (feature position, spatial-frequency) visual 

representations supporting the decoded information is 

obtained by correlating the classifier’s confidence-values 

with the presented features in a time resolved manner. 

 

Temporal generalization 

We then asked whether the temporal unfolding of this 

category-specific information emerged from a stable or 

varying neural code, i.e. if the EEG pattern dissociating two 

classes generalized at different points in time (King and 

Dehaene 2014). We computed a temporal generalization 

matrix where our lda model was trained on EEG patterns 

from a specific time i and tested on EEG patterns from a 

different time, j, within the -100 to 1000 ms time window. 
Accurate decoding at a specific coordinate in this matrix 

indicates that the model was able to generalize it’s training at 

time i to time j, and therefore that both time points shared a 

similar (stable) EEG pattern.  

The resulting matrix, shown in figure 3, indicates that our 

time-resolved decoding results emerged from at least two 

distinct brain processes. First, emotion category-specific 

information travels across brain areas from ~270 to 350 ms 

after face onset. This is then followed by a stable neural 

pattern that suggests evidence accumulation from ~350 to 

650 ms. The following diagonal pattern suggests that 

emotion-category specific is finally diffused across brain 

areas, presumably before the perceptual decision. 

 

Visual features behind category-specific 

information 

 

But what, exactly, is contained in this category-specific 

information? To reveal the specific visual features underlying 

time resolved decoded information in the brain, we first 

extracted the trial-by-trial distance to the linear discriminant 

classifier decision criterion c, for every time point, participant 

and tasks. This produced a vector of 2560 distance-values 

(henceforth referred as d-vals) per participant, task and time 

point. These d-vals could be negative (class 1, e.g. happy 

category) or positive (class 2, e.g. fear category). To ensure 

that a positive correlation between visual features and d-vals 

relate to accurate model classification, we sign-flipped (*-1) 

the d-vals for trials where class 1 stimuli were presented, such 

that any positive valued d-val reflects correct identification 

by the model, and any negative valued d-val reflects 

misclassification by the model. D-vals distributions were 

then z-transformed across the 2560 trials for every time point, 

participant, and task, and smoothed in the time domain with 

a Gaussian kernel of 4 ms of standard-deviation. Next, we 

computed the relative presence of the visual features across 

trials, for either spatial frequency content (from 2.4 cpi to 

76.7 cpi in 20 steps), orientation content (10 to 180 degree in 

10 degree steps) or feature [x,y] position (3000 image 

coordinates). As a final final step, we weighted this 

standardized [FeaturePresence x Trials] matrix with the 

standardized model confidence-values at every time point, 

and smoothed this matrix with a 2D Gaussian of 2 standard-

deviation. Again, permutation testing was used to assess 

significance. 

This procedure revealed how brain representation of emotion 

categorical information is supported by spatial [x,y] feature 

position representations (Figure 2b). Figure 2c  shows how 

this time-resolved information is supported by spatial-

frequency (SF, coarse or fine details) content through time. 

Positive (yellow-green) values indicates a positive 

correlation between (accurate) model classification 

confidence and feature information presence, while a 

negative (dark-blue) values indicates low-confidence 

(uncertainty) of the model while the specific visual content 

was presented. In other words, high positive values 

indicatethat a specific visual feature helped/supported the 

brain’s representation of category-specific information from 

a face.  
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Figure 3. Generalization of EEG patterns through time. 

Above chance accuracy on the diagonal indicates variable 

brain representations, while off-diagonal decoding indicates 

a stable neural encoding of category-specific information.  

 

A number of things can be distilled from the planes shown in 

figure 2 b and c. First, the peak decoding plateau observed 

from time-resolved classification (around 550 ms) is helped 

by the presence of mid-high-frequency, fine detailed visual 

information (~12-35cpi). Note that this 300-500 ms time 

window also coincides with the stable accumulation of 

evidence found in the temporal generalization matrix (figure 

3). Second, a coarse-fine-coarse pattern seems to coincide 

with the diffusion-accumulation-diffusion of information that 

was shown in figure 3. Third, and finally, feature position 

maps indicate that high-level information about emotion is 

supported by clearly defined representation of facial 

attributes: mouth representation supporting decoding in the 

200-400 ms window, followed by a more complete mouth + 

left-eye representation coinciding with peak decoding 

accuracy.  

Conclusion 

Past studies have focused on describing where perceptual and 

cognitive representations were encoded or when they 

unfolded in time, but had yet to explicitly describe, and 

actually see the specific visual content that supports such 

representations. Here, we fill the gap between time-resolved 

decoding and visual psychophysics and reveal the visual 

features underlying the decoding of realistic, category-

specific information in the brain through time. The visual 

features we reveal with this method match psychophysical 

behavioral data (e.g. coarse-to-fine processes, e.g. Caplette et 

al., 2016; mouth for emotion, Smith et al., 2008). Doing so, 

we show that seemingly simple linear steps of evidence 

processing by the visual system in fact engage multiple and 

interconnected dynamics between visual features, and the 

accumulation and diffusion of category-specific information 

in the brain. 
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