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Abstract

Humans and animals frequently need to make choices
among options with imperfectly known reward outcomes.
In neuroscience, this is often studied using the multi-
armed bandit task, in which subjects repeatedly choose
among bandit arms with fixed but unknown reward rates,
thus negotiating a tension between exploitation and ex-
ploration. Here, using a modified version of the bandit
task in which we query subjects reward expectations of
unchosen arms, we investigate how general reward avail-
ability in the environment affects human prior beliefs.
Based on self-report data and computational modeling of
behavioral data, we obtain converging evidence that hu-
man subjects systematically under-estimate reward avail-
ability. Additional computational analyses reveal that
this under-estimation compensates for two other appar-
ent suboptimalities in human behavior, namely a default
assumption of environmental non-stationarity, and the
use of a simplistic decision policy. This result represents
a concrete instance in which multiple sub-optimalities
in brain computations synergistically interact to achieve
much better-than-expected behavioral outcome. This
work raises the intriguing possibility that many appar-
ently isolated limitations in brain computation and rep-
resentation may actually work together to achieve highly
intelligent behavior in a broader context, and also sheds
light on computationally efficient algorithms that could be
adopted by artificial intelligence systems.
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Introduction

Humans and animals frequently have to make choices among
options with imperfectly known outcomes. This is often stud-
ied using the multi-armed bandit task (Cohen et al., 2007),
in which the subject repeatedly chooses among bandit arms
with fixed but unknown reward probabilities. The observer
learns how rewarding an arm is by choosing it and observ-
ing whether it produces a reward, thus each choice pits ex-
ploitation against exploration since it affects not only the im-
mediate reward outcome but also the longer-term information
gain. Previously, it has been shown that human learning in
the bandit task is well captured by a Bayesian ideal learning
model (Zhang & Yu, 2013), the Dynamic Belief Model (DBM)

(Yu & Cohen, 2009), which assumes the reward distribution
to undergo occasional, unsignaled changes — this occurs de-
spite the reward rates’ actually being fixed during a game.
While this finding was consistent with the default (and incor-
rect) non-stationarity assumption humans make in a variety of
other psychological tasks (Yu & Cohen, 2009; Shenoy et al.,
2010; Ide et al., 2013; Yu & Huang, 2014; Zhang & Yu, 2013),
it has remained nevertheless rather mysterious why humans
would persist making this assumptions despite inconsistent
environmental statistics.

In this work, we present and model human behavioral
data in a variant of the bandit task, in which we vary re-
ward abundance and variability in different environments. We
aim to examine how humans adapt their decision-making to
the different reward environments. Specifically, we focus on
whether human subjects have veridical prior beliefs about re-
ward rates. To gain greater computational insight into human
learning and decision making, we compare the ability of DBM
and a number of alternative models in their ability to cap-
ture the human data. Specifically, we consider two Bayesian
learning models, DBM and Fixed Belief Model (FBM) (Yu &
Cohen, 2009), coupled with a softmax decision policy. Be-
sides Bayesian learning, we also include a simple reinforce-
ment learning rule (RL), the delta rule (Rescorla & Wagner,
1972), which has been widely used in the neuroscience lit-
erature (Behrens et al., 2007). DBM is related to RL in that
the stability parameter in DBM also controls the exponential
weights as the learning rate in RL does, but they are not
mathematically equivalent. For the decision policy, we em-
ploy the softmax policy, which is popular in psychology and
neuroscience, and has been frequently used to model human
behavior in the bandit task (Daw et al., 2006), and Knowledge
Gradient, which previously found to capture the human be-
havior in bandit task the best among a few decision making
models (Zhang & Yu, 2013), not including softmax.

Experiment

We recruited 107 UCSD students to participate in a four-
armed, binary bandit task, whereby the reward rates in four
environments were identically and independently sampled
from four Beta distributions: Beta(4, 2), Beta(2, 4), Beta(30,
15) and Beta(15, 30). The reward rates for the 50 games (15
trials each) were pre-sampled, and randomized for each sub-
ject. The cover story was that is an ice fishing contest, where
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the four arms represent four fishing holes. Participants are in-
formed that the different camps they fish from reside on four
different lakes that vary in (a) overall abundance of fish, and
(b) variability of fish abundance across locations. At the outset
of each environment, we tell them the lake’s fishing conditions
(high/low abundance, high/low variance) and provide samples
from the distribution (a fishing report showing the number of
fish caught out of 10 attempts at 20 random locations in the
lake). A subset of 32 subjects were required to report the re-
ward rate of the never-chosen arms at the end of each game.

The reported reward rates are shown in Fig. 1A. Human
subjects reported estimates of reward rate significantly lower
than the true generative prior mean (p < .01), except in low
abundance and low variance environment (p = 0.2973). The
average reported estimates across the four reward environ-
ments are not significantly different (F(3,91) = 1.78,p =
0.157, see Fig. 2A), indicating that humans do not alter their
prior belief about the reward rates even when provided with
both explicit (verbal) and implicit (sampled) information about
the reward statistics of the current environment. In spite of
systematically underestimating expected rewards, our sub-
jects appear to do well in the task. The actual total reward
accrued by the subjects are only slightly lower than the op-
timal algorithm utilizing correct Bayesian inference and the
dynamic-programming-derived decision policy; humans also
perform significantly better than the chance level attained by
a random policy (p < .001), which is equal to the generative
prior mean of the reward rates. Thus, subjects are actually ex-
periencing sample reward rates that are higher than the gen-
erative prior mean (since they perform much better than the
random policy); nevertheless, they significantly underestimate
the mean reward rate.

Models
Model description

We denote the reward rate of arm k at time r as 6}. We
denote the reward outcome at time t as R; € {0,1}, and
R’ = [R|,Ry,...,R;]. We denote the decision at time t as Dy,
D, € {172,3,4}, and D' = [Dl,Dz,...,Dt].

Dynamic belief model (DBM). The generative dynamics is

p(6; =0[8; ") =y3(6; ' —0)+(1-7)p°(®), (1)

where p°(8) is the assumed prior distribution.
The posterior reward rate distribution given the reward out-
comes up to time t can be computed iteratively as

p(BLIR", DY) o< p(R|6})p(8L R D), it D, =k (2)
p(BiR',D) = p(6f R, D), if D, # k (3)

The predictive reward rate distribution at time ¢ given the
outcomes up to time ¢ — 1 is:

p(,=6|R™\. D) =yp(6; ' =R, D'" 1)+ (1-7)p"(8).

4)
The expected (mean predicted) reward rate of arm k at trial
tis 6, =E[6, R, D'~

Fixed belief model (FBM). FBM assumes stationarity and
can be viewed as a special case of DBM, with y= 1.
Reinforcement Learning (RL). The update rule is

0. =6""+re® -0, (5)

Softmax decision policy. Softmax assumes the choice
probabilities among the options to be normalized polynomial
functions of the estimated expected reward rates:

(64)"

Di=k)= K
D=k = or g

(6)

Optimal policy. The multi-armed bandit problem can be
viewed as a Markov decision process, where the state vari-
able is the posterior belief after making each observation. The
optimal solution to the problem considered here can be com-
puted numerically via dynamic programming (Zhang & Yu,
2013; Averbeck, 2015), where the optimal learning model is
FBM with the correct prior distribution. Previously, it has been
shown that human behavior does not follow the optimal policy
(Zhang & Yu, 2013); nevertheless, it is a useful model to con-
sider in order to assess the performance of human subjects
and the various other models in terms of maximal expected
total reward.

Knowledge Gradient (KG). The knowledge gradient
decision-making policy (Frazier & Yu, 2008) is an approxima-
tion to the optimal policy, which is much cheaper computation-
ally. The algorithm is myopic as to compute the knowledge
gain, it commits to one more exploratory decision at any given
trial, and assumes to exploit in all remaining trials given the
knowledge after that single additional exploration. The knowl-
edge gain is computed as

Vi = E[rllkgxe;fl |D; =k, R D' —n}(gxe;(, 7)

The decision rule takes into account of current expected re-
ward rates, knowledge gain, and horizon. The value function
is computed as:

Vi=08+(T—1—1), (8)

Under DBM assumption, the horzion is computed as the min
of the expected horizon (before a change point occur) and
current horizon:

t’:min{]%y,Tft}fl (9)

The original KG algorithm is deterministic, to allow decision
noise, we add another layer of softmax decision rule with extra
parameter b.

KG is previously found to be the best model among several
decision policies (Zhang & Yu, 2013) (not including softmax).
However, in a later study, softmax was found to explain human
data better than KG (Harlé et al., 2015).
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Figure 1: (A) Reported reward rate estimates by human sub-
jects (orange), and fitted prior mean of DBM (blue), FBM
(purple), and RL (green). Dotted lines: the true genera-
tive prior mean (0.67/0.33 for high/low abundance environ-
ments). Error bars: s.e.m. across participants or validation
runs. (+M, -V) denotes high mean (abundance), low vari-
ance, and so on. (B) Averaged per-trial likelihood of 10-fold
cross validation of three learning models coupled with two de-
cision models. Dotted line: the chance level (0.25) (C) Re-
ward rates achieved in high abundance and high variance by
different models: DBM-+softmax (blue), FBM+softmax (pur-
ple), DBM+KG (grey), FBM+KG (brown) and optimal policy
(brown). The diamond symbols represent the actual reward
per trial earned by human subjects (y-axis) vs. the fitted
prior mean (x-axis) of the two models. Vertical dotted lines:
true generative prior mean (D) shift rate (choosing different
arms as the last trial) after three wins proceed by a loss of
FBM+softmax and DBM+softmax models. The diamond sym-
bols represent the actual shift rate by human subjects (y-axis)
vs. the fitted prior mean (x-axis) of the two models.

Model comparison

Here, we compare the various models to human behavior, in
order to identify the best (of those considered) formal descrip-
tion of the underlying psychological processes.

We first evaluate how well the three learning models fit
human data. Since they have different numbers of parame-
ters, we perform 10-fold cross-validation to avoid overfitting
for comparison. We use per-trial likelihood as the objective
function, calculated as exp(log L/N), where L is the maxi-
mum likelihood of the data, and N is the total data points. We
fit prior weight (a.+ P, related to precision) at the group level.
We fitother parameters at the individual level, and separately
for four reward environments.

Fig. 1B shows the held-out per-trial likelihood for soft-
max and KG with DBM, FBM, and RL, averaged across ten

runs of cross-validation. Coupled with DBM or FBM, soft-
max achieves significantly higher per-trial likelihood than KG
(p < .001) based on paired t-test, i.e. softmax decision pol-
icy behaves more like human subjects than KG. Coupled with
softmax or KG, DBM achieves significantly higher per-trial like-
lihood than FBM (p < .001) and RL (p < .001) based on
paired t-test, i.e., DBM predicts human behavior better than
the other two learning models. This result corroborates previ-
ous findings (Zhang & Yu, 2013) that humans assume non-
stationarity by default in the multi-armed bandit task, even
though the reward structure is truly stationary, and they do
not follow optimal or approximate optimal decision policy.
Next, we examine how well the learning models coupled
with softmax can recover the underestimation effect observed
in human participants. The reported estimation is on the
arm(s) that they never chose at the end of each game, which
is their belief of the mean reward rate before any observa-
tion, i.e., mathematically equivalent to the prior mean (DBM
& FBM) or the initial value (RL). For simplicity, we will refer
to them all as the prior mean. Fig. 1A shows the average
fitted prior mean of the models. FBM recovers prior mean
values that are well correlated with the true generative prior
means (r = +.96, p < 0.05), and significantly different in the
four environments (F'(3,424) = 13.47, p < .001). The recov-
ered prior means for RL are also significantly different in the
four environments (F(3,424) = 4.21,p < 0.01). In contrast,
the recovered prior means for DBM are not significantly differ-
ent in the four environments (F(3,424) = 0.91, p = 0.4350),
just like human estimates (Fig. 2A). DBM also recovers prior
mean values in low abundance and high variance environment
slightly lower than in other environments, similar to human re-
ports. In summary, DBM allows for better recovery of human
internal prior beliefs of reward expectation than FBM or RL.

Simulation results

Finally, we try to understand why humans might exhibit a
“pessimistic bias” in their reward rate expectation. Fig. 1C
shows the simulated average earned reward per trial in the
high abundance environment, of the various models as a func-
tion of the assumed prior mean. The per-trial earned reward
rates are calculated from the simulation of models/optimal pol-
icy under the same reward rates of the human experiment.
We focus on the high variance and high abundance environ-
ments, since model performance is relatively insensitive to the
assumed prior mean in other environments (not shown).

Firstly, consider the diamond symbols in Fig. 1C: the com-
bination of human subjects’ actual average per-trial earned
reward (y-axis) and the fitted prior mean for each of the two
models (x-axis, color-coded) is very close to DBM’s joint pre-
dictions of the two quantities (blue lines), but very far away
from FBM (purple line)’s joint predictions of the two quanti-
ties. This result provides additional evidence that DBM can
predict and capture human performance better than the other
two models.

More interestingly, while the FBM and KG (brown) achieves
the highest earned reward when it assumes the correct prior
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(as expected), when substitute the decision policy to softmax,
or substitute the learning model to DBM, it achieves its max-
imum reward at a prior mean much lower than the true gen-
erative mean. This implies that one way to compensate for
using the sub-optimal softmax policy, or having an incorrect
nonstationary assumption, is to somewhat underestimate the
prior mean. In addition, DBM and softmax achieves maximal
earned reward with an assumed prior mean even lower than
FBM and softmax, or DBM and KG, implying that even more
prior reward rate underestimation is needed to compensate
for the combination of softmax and DBM. We note that human
participants do not assume a prior mean that optimizes the
earning of reward (blue diamonds are far from the peak of the
blue lines) — this may reflect a compromise between optimiz-
ing reward earned and truthfully representing environmental
statistics.

Lastly, To understand how DBM behaves differently than
FBM, and thus how a lower prior mean helps DBM, and what
it implies about human psychological processes, we consider
the empirical/simulated probability of the participants/model
switching away from a “winning” arm after it suddenly pro-
duces a loss (Fig. 1D). Since DBM assumes reward rates can
change any time, a string of wins followed by a loss indicates
a high probability of the arm switching to a lower reward rate.
On the other hand, since FBM assumes reward rates to be
stable, it depends more on long-term statistics to estimate an
arm’s reward rate. Give observations of many wins, which
leads to a relatively high reward rate estimate as well as a
relatively low uncertainty, a single loss should still induce in
FBM a high probability of sticking with the same arm. Fig. 1C
shows that the simulated shift rate of the two models (proba-
bility of a model to shift away from the previously chosen arm)
exactly follow the pattern of behavior described above, that
DBM (blue) always has a higher shift rates than FBM (purple).
The diamond markers shows fitted prior mean on the x-axis,
and human shift rate on the y-axis. Human subjects’ shift rates
are closest to what DBM predicts, which is what we would al-
ready expect from the fact that overall DBM has already been
found to fit human data the best.

To further examine the effect of a lower prior mean, we
compare the shift rates of DBM and FBM under different prior
mean with the optimal policy. The dotted horizontal black line
is the shift rate of optimal policy, and the vertical black line
is the true prior mean. The vertical blue and pruple are the
prior mean that maximizes reward rate for DBM and FBM (the
best prior mean). With the true prior, both DBM and FBM shift
away from the “winning” arm much more than the optimal pol-
icy, and this is mitigated by a lower prior. The best prior mean
for DBM almost exactly reproduces the shift rate of the optimal
policy, while the optimal prior mean for FBM yields lower shift
rate than the optimal policy.
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