
The effect of task and training on intermediate representations in convolutional
neural networks revealed with modified RV similarity analysis

Jessica A.F. Thompson (j.thompson@umontreal.ca)
BRAMS, CRBLM, Mila, Université de Montréal

Montreal, Quebec, Canada

Yoshua Bengio (yoshua.bengio@mila.quebec)
Mila, Université de Montréal
Montreal, Quebec, Canada

Marc Schönwiesner (marcs@rz.uni-leipzig.de)
Department of Biology, University of Leipzig

Leipzig, Germany

Abstract
Centered Kernel Alignment (CKA) was recently proposed
as a similarity metric for comparing activation patterns
in deep networks. Here we experiment with the modi-
fied RV-coefficient (RV2), which has similar properties to
CKA while being less sensitive to dataset size. We com-
pare the representations of networks that received vary-
ing amounts of training on different layers: a standard
trained network (all parameters updated at every step),
a freeze-trained network (layers gradually frozen during
training), random networks (only some layers trained),
and a completely untrained network. We found that RV2
was able to recover expected similarity patterns and pro-
vide interpretable similarity matrices that suggested hy-
potheses about how representations are affected by dif-
ferent training recipes. We propose that the superior per-
formance achieved by freeze training can be attributed
to representational differences in the penultimate layer.
Comparisons to random networks suggest that the inputs
and targets serve as anchors on the representations in
the lowest and highest layers.

Keywords: similarity analysis, random features, CNNs, freeze
training, RV coefficient

Introduction
The study of artificial and biological neural networks often re-
quires quantification of the similarity of activation patterns be-
tween two networks. Common approaches to this problem
are variants of canonical correlation analysis (CCA) (Hotelling,
1936). For example, Singular Vector CCA and Projection-
Weighted CCA have recently been used to uncover insights
about training dynamics and generalization in deep networks
(Raghu, Gilmer, Yosinski, & Sohl-Dickstein, 2017; Morcos,
Raghu, & Bengio, 2018). Regularized CCA is often used
in neuroscience to find relationships between neural and be-
havioural or clinical variables (Bilenko & Gallant, 2016). How-
ever, these variants of CCA can require large amounts of data
and so are often impractical for analyzing neural activations
where the number of observations may be small and the di-
mensionality may be large.

Representational Similarity Analysis (RSA) approaches this
problem by first constructing a similarity matrix for each do-
main (e.g. neural, model, or behaviour) which measures all
pairwise distances between experimental conditions or stim-
uli and then comparing the similarity structure of the different
domains. RSA has been used to compare activation vectors
of deep networks to neural activation patterns in human and
other animal brains (Yamins, Cadieu, & DiCarlo, 2013). This
approach avoids problems associated with small datasets or
mismatched dimensions. However, RSA only compares rep-
resentational geometries (the structure of pairwise similarities
between conditions) and not the representations themselves.
Or, put another way, it treats all representations that produce
the same similarity structure as equivalent. There are several
reasons why one might want a similarity metric with different
invariance properties. For example, in a deep network, it is not
just the information content of a representation that is mean-
ingful but also the specific configuration of that information.
For example, the insertion of a linear invertible transforma-
tion between two layers of a deep network can alter the net-
work’s behaviour. Therefore, one may not wish to be invariant
to all linear invertible transformations, as is the case for RSA
and CCA (Kornblith, Norouzi, Lee, & Hinton, 2019; Thompson,
Bengio, Formisano, & Schönwiesner, 2016).

Kornblith et al. (2019) propose the use of Centered Kernel
Alignment (CKA) based on the fact that CKA is only invari-
ant to orthogonal transformations and isomorphic scaling (not
arbitrary linear invertible transformations) and that it demon-
strates intuitive notions of similarity, namely that correspond-
ing layers are most similar to themselves in networks of iden-
tical architecture trained from different random initializations.
They state that CKA with a linear kernel is equivalent to the RV
coefficient. The RV coefficient is a matrix correlation method
for comparing paired observations X and Y with different num-
bers of columns (Robert & Escoufier, 1976).

RV (X,Y) =
tr(XX′YY′)√

tr[(XX′)2]tr[(YY′)2]
(1)

The RV coefficient is still sensitive to dataset size. When
the number of observations is too small relative to the number

1034

This work is licensed under the Creative Commons Attribution 3.0 Unported License.

To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0



of dimensions, the RV coefficient will tend to 1, even for ran-
dom, unrelated matrices. The modified RV coefficient (RV2)
addresses this problem by ignoring the diagonal elements of
XX′ and YY′, which pushes the numerator to zero when
X and Y are random matrices, even for small sample sizes
(Smilde, Kiers, Bijlsma, Rubingh, & Van Erk, 2009).

RV2(X,Y) =
Vec(X̃X′)′Vec(ỸY′)√

Vec(X̃X′)′Vec(X̃X′)×Vec(ỸY′)′Vec(ỸY′)
(2)

Where X̃X′ = XX′− diag(XX′) and similarly for ỸY′. Thus
RV2 provides a similarity metric with the same invariance
properties as CKA while being less sensitive to dataset size,
making it a good candidate for comparing neural activities of
large artificial and biological neural networks.

Here we explore the use of RV2 to characterize inter-
mediate representations of simple convolutional neural net-
works. Our main contributions are (a) extending Kornblith et
al. (2019)’s validation of CKA-flavored similarity metrics by us-
ing RV2 to recover expected similarity patterns in simple net-
works, and (b) showing that RV2 can generate interpretable
patterns that can suggest hypotheses about the nature of in-
termediate representations in deep neural networks.

Experiments
Trained networks in the following analyses were previously
reported in Thompson, Schönwiesner, Bengio, and Willett
(2019). All networks were of identical architecture consist-
ing of nine convolutional layers and three fully connected lay-
ers. Networks were trained to recognize context-dependent
English or Dutch phones for 100 epochs (except for the un-
trained network). Networks differed in the training that they
received. The standard networks were randomly initialized
and all parameters were updated on every mini-batch. The
untrained network was randomly initialized and never trained.
The procedures for the freeze-trained and random networks
are described below. Please refer to the original text for de-
tails about the datasets, architecture and training.

Activations to one hour of English speech from 60 speakers
(1-minute each) were measured from all networks. We used
the hoggorm python package to calculate RV2 for all pairs
of layers. To make the experiments feasible, we performed
average-pooling on all feature maps and downsampled the re-
sulting activation vectors by a factor of 40, leading to activation
vectors of length 23,582 per ‘unit’.

Untrained vs Trained

We replicated Figure F.4 from Kornblith et al. (2019) to verify
that a slightly different metric, RV2, applied to activations from
a different model trained on a different task generates similar
patterns of similarity between trained and untrained networks.
Figure 1 (bottom row) shows the self-similarity of an untrained
network and the similarity between the untrained network and
two different trained networks: standard training and transfer
freeze-training (described in the next section). We observe

approximately the same patterns as are reported in Kornblith
et al. (2019).

Figure 1: Top row Similarity between English and Dutch standard
networks and the Dutch-to-English transfer freeze-trained network.
The largest differences are in fc2. Lower layers in the transfer freeze-
trained network are most similar to their corresponding layer in the
Dutch standard model. Bottom row Network self-similarity at ini-
tialization (left) and the similarity between untrained and trained net-
works, either standard net (middle) or the transfer freeze-trained net
(right). The parenthetical percentages indicates the top-1 accuracy.

Freeze Training
It has been suggested that convolutional neural networks con-
verge ‘bottom-up’, with early layers converging to their final
form earlier in training (Raghu et al., 2017; Alain & Bengio,
2016). Based on this observation, Raghu et al. (2017) pro-
posed freeze training. During freeze training, at regular in-
tervals, the parameters of an additional layer are frozen (i.e.
removed from the set of trainable variables). Layers are frozen
in order by depth such that, by the end of training, only the final
layer is being updated. The freeze-trained transfer networks
from Thompson et al. (2019), which were initialized with pa-
rameters from a network previously trained on one language
and then freeze-trained on another, outperformed all other
freeze-trained networks (no transfer) and other transfer net-
works (no freeze training). Here, we compare the activations
of the English standard, Dutch standard and Dutch-to-English
freeze-trained networks from Thompson et al. (2019). We pre-
dict with high confidence that the early layers of the Dutch-
to-English freeze-trained network will be more similar to the
Dutch than the English standard model since they were ini-
tialized with the parameters from the Dutch standard network
and received relatively little training afterwards. This provides
a good test of whether RV2 is able to recover this expected
pattern. Additionally, we were interested to see if the supe-
rior performance of the transfer freeze-trained network could
be attributed to any representational differences between the
compared networks.

For all comparisons between the standard and transfer
freeze-trained networks (Figure 1, top row), the highest simi-
larity values were near the diagonal. This pattern provides fur-

1035



ther validation that, like CKA, RV2 finds the most similar layer
in one network to be near the corresponding layer in another
network of identical architecture. As predicted, early layers in
the Dutch-to-English freeze-trained network were most similar
to the corresponding layer in the Dutch standard model and
less similar to the English standard model. Near correspond-
ing layers in the English and Dutch standard models were con-
siderably similar to one another, despite being trained on dif-
ferent languages. The largest differences in all comparisons
occured in layer fc2. Thus, the superior performance of the
transfer freeze-trained network may be primarily attributable
to differences in representation at fc2.

Random Features
Yosinski, Clune, Bengio, and Lipson (2014) investigated the
effect on performance of leaving progressively more layers
untrained in convolutional neural networks trained to recog-
nize objects in images. Performance dropped sharply to zero
when the first three layers were left at their random initializa-
tion and only subsequent layers were trained. Thompson et
al. (2019) replicated this experiment with networks trained on
speech and found a different pattern (see Figure 2). Perfor-
mance gradually declined as more layers were left untrained,
only reaching near-zero performance when all but the last
layer were left untrained (Thompson et al., 2019).

Figure 2: Performance of random networks as reported in
Thompson et al. (2019) (left) and Yosinski et al. (2014) (right).

Random features have a long history of success in kernel
machines (Rahimi & Recht, 2007). However, the effect of sev-
eral consecutive random layers is less well understood. In
particular, how do intermediate representations reconfigure as
more layers are left untrained?

We presume that the effect of several consecutive random
layers is the same as the effect of one random layer: a ran-
dom projection of the input. None of the work of disentangling
the relevant factors of variation has been performed by these
random layers and so the remaining trainable layers have the
same job to do as was done by the full set of layers in the
standard network. According to this hypothesis, the represen-
tational transformations originally performed by all 12 layers in
the standard network must be somehow compressed into the
remaining trained layers of the random networks. The hypoth-
esis that these representational transformations will be evenly
distributed across the remaining trainable layers is depicted
in Figure 3. The performance of the random network would
only be dependent on whether the structure and capacity of
the remaining layers is sufficient to learn and represent the

necessary transformations. Under this interpretation, a grad-
ual degradation in performance as more layers are left un-
trained seems more likely and the sharp drop in performance
observed in Yosinski et al. (2014) is unexplained. To test this
hypothesis, we calculated RV2 similarity matrices comparing
each random network to the standard English network.

Figure 3: Left Self-similarity of the English standard network. Right
Idealized diagram of the hypothesis that the representational trans-
formations of the standard network will be evenly distributed across
the trained layers of a random net.

The comparisons between the standard model and the ran-
dom networks are shown in Figure 4. In the following, ‘random
net n’ refers to the network with random layers up to layer n;
only layers above layer n were trained. Layers are named c1,
c2, ..., c9, fc1, fc2 to distinguish the convolutional and fully
connected layers. In contrast with our hypothesis, late layers
remain most similar to their corresponding layer in the stan-
dard network, even as more early layers are left untrained.
This pattern is especially clear in the similarity matrix for ran-
dom net 4. The first trained layer of random net 4, layer c5, is
diffusely similar to layers c2–c6 in the standard network, while
the remaining layers show maximum similarity near the diag-
onal. When a network is mostly composed of random layers
and only the fully connected layers are trained (e.g. random
nets 9-10), the trained layers are not similar to any layer in the
standard network. While these networks are still able to per-
form the task to some extent, they clearly do so in a way that
does not mimic the standard network.

Discussion
Kornblith et al. (2019) validated the CKA method by show-
ing that it can identify corresponding layers in two networks
trained from different random initializations. Our comparisons
of freeze-trained networks, standard networks and untrained
networks extend this validation by showing that a related simi-
larity metric, RV2, applied to networks trained on speech, can
recover expected and interpretable patterns of similarity.

Our random networks do not show an even distribution of
the needed representational transformations across all trained
layers. Instead, early trained layers compensate more for the
reduced number of trained layers, such that the representa-
tions in late trained layers are less affected. This may reflect

1036



Figure 4: The RV2 similarity between the baseline model (all layers trained) and networks of identical architecture with only layers above layer
n trained, ∀n ∈ [c1, fc1].

architectural constraints on representation. For example, fully
connected layers may tend to be more similar to other fully
connected layers than to convolutional layers and the fully
connected layers may require a particular representation in
the preceding convolutional layers. This top-down influence
on representations in late layers may also be attributable to the
targets serving as an anchor in the same way that the inputs
anchor the representations in early layers. While there may
be many computational solutions to the classification problem
at hand, the form of the inputs and targets themselves are
fixed, which may constrain the form of representations near
the input and targets.

Acknowledgments
Thanks to Nuance and Mitacs for their support and to João
Felipe Santos and Guillaume Alain for helpful comments.

References
Alain, G., & Bengio, Y. (2016). Understanding intermediate

layers using linear classifier probes. arXiv , 1610.01644v3.
Bilenko, N. Y., & Gallant, J. L. (2016). Pyrcca: regularized

kernel canonical correlation analysis in Python and its ap-
plications to neuroimaging. Front. of Neuroinformatics.

Hotelling, H. (1936). Relations Between Two Sets of Variates.
Biometrika, 28(3/4).

Kornblith, S., Norouzi, M., Lee, H., & Hinton, G. (2019). Sim-
ilarity of Neural Network Representations Revisited. ICLR
workshop on Debugging Machine Learning Models.

Morcos, A. S., Raghu, M., & Bengio, S. (2018). Insights on
representational similarity in neural networks with canonical
correlation. NeurIPS.

Raghu, M., Gilmer, J., Yosinski, J., & Sohl-Dickstein, J. (2017).
SVCCA: Singular Vector Canonical Correlation Analysis for
Deep Understanding and Improvement. NeurIPS.

Rahimi, A., & Recht, B. (2007). Random features for large-
scale kernel machines. NeurIPS.

Robert, P., & Escoufier, Y. (1976). A Unifying Tool for Linear
Multivariate Statistical Methods: The RV- Coefficient. Ap-
plied Statistics, 25(3).

Smilde, A. K., Kiers, H. A., Bijlsma, S., Rubingh, C. M.,
& Van Erk, M. J. (2009). Matrix correlations for high-
dimensional data: The modified RV-coefficient. Bioinformat-
ics, 25(3).

Thompson, J. A. F., Bengio, Y., Formisano, E., &
Schönwiesner, M. (2016). How can deep learning advance
computational modeling of sensory information processing?
NeurIPS workshop on Representation Learning in Artificial
and Biological Neural Networks.

Thompson, J. A. F., Schönwiesner, M., Bengio, Y., & Willett, D.
(2019). How transferable are features in convolutional neu-
ral network acoustic models across languages? ICASSP.

Yamins, D. L. K., Cadieu, C., & DiCarlo, J. J. (2013). Hi-
erarchical Modular Optimization of Convolutional Networks
Achieves Representations Similar to Macaque IT and Hu-
man Ventral Stream. NeurIPS.

Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014).
How transferable are features in deep neural networks?
NeurIPS.

1037


