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Abstract: 

The brain displays scale-free and multifractal dynamics 
that change across different states of consciousness. 
Whether the multifractal properties of EEG data change 
in a similar way when shifting from a conscious to an 
unconscious state compared to shifting from 
wakefulness to sleep is still largely unknown. To address 
this we ask a slightly different question: How well can we 
use a classifier trained on sleep EEG multifractality data 
to correctly discriminate conscious and unconscious 
states. To this end, we used a Domain Adversarial Neural 
Network (DANN) framework geared towards 
discriminating neural signals recorded during conscious 
vs unconscious states (target domain), based on 
classification of brain signals recorded during 
wakefulness vs sleep (source domain). We compare 
results obtained with naïve transfer learning (no domain 
adaptation), with supervised and unsupervised domain 
adaptation. The input data consisted of multifractal 
parameters computed from EEG recordings. This paper 
reports two important findings: First, our analyses 
provide evidence for the feasibility of creating a DANN 
architecture that can learn to discriminate 
consciousness from anesthetic-induced 
unconsciousness via adversarial adaptation of 
sleep/wakefulness discrimination. Second, by exploring 
the topographies of the successful classification rates 
across the EEG array, we were able to identify functional 
similarities of EEG multifractality patterns across sleep 
and anesthesia. 
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Introduction 

Background 

Sleep and generalized anesthesia are not the same 
phenomenon, but they share some similarities in terms 
of diminished arousal for instance. Some studies 
indicate that the sleep and anesthesia can be 
associated with similar patterns of oscillatory bbrain 
dynamics (e.g. Brown, Lydic, & Schiff, 2010). EEG 
under Propofol anaesthesia shows large slow waves 
similar in appearance to the slow waves seen during 
deep sleep (Murphy et al., 2011). Studies that assess 
large-scale brain dynamics during sleep and anesthesia 
provide complementary insights into the neural bases 
of consciousness. Anesthetics are a useful tool for the 
study of human being unconsciousness as they can be 
titrated to pharmacologically induce the loss of 
consciousness. Likewise, the various neural properties 
properties of distinct sleep stages provide an interesting 
window on altered states of consciousness. Among the 
numerous EEG features that are modulated during 
sleep and under anesthesia, scale-invariance is a 
promising metric that is receiving increasing attention. 
In a recent study, we have for instance reported that 
Sevoflurane-induced light sedation is associated with 
drops in long-range temporal correlation in beta 
oscillations over central brain areas, nicely captured 
with detrended fluctuation analyses (Thiery et al., 
2018). A closely related formalism that can be used to 
assess scaling properties of brain signals is 
multifractality. Whether the properties it measures (e.g. 
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self-similarity and extent of multifractality) change in a 
similar way during sleep and anesthesia is still an open 
question. 

Aim of the study 

The goal of the present study is to probe the 
discrepancies and similarities between changes in EEG 
multifractility that occur during sleep to those observed 
in generalized anesthesia. We chose to tackle this 
question through a transfer learning framework where 
we assess how well a neural network trained on sleep 
EEG data can actually discriminate consciousness from 
anesthetic-induced unconsciousness states. The 
underlying premise is that EEG features that allow for 
successfully transfer reflect functional similarities 
between the source (sleep) and target (anesthesia) 
domains. In particular, we hypothesize that while the 
neural underpinnings of sleep and anesthesia are not 
identical, some similarities in specific scaling properties 
may be revealed through a transfer learning framework. 

 

Materials and Methods 

Sleep dataset 

Whole night polysomnography recordings were 
obtained from 36 subjects collected at the Lyon 
Neuroscience Research Center (Lyon, France). Each 
record contains EOG, EMG and 19 scalp-EEG 
channels and sampled at frequency of 1kHz. The data 
was scored (Awake, S1, S2, Slow-Wave Sleep (SWS) 
and REM) both visually and using our automatic staging 
tools (i.e. decision-tree multi-class SVM). For further 
details on the data set and pre-processing methods, 
see Lajnef et al., (2015). 

Anesthesia dataset 

Sevoflurane EEG data (light sedation) was collected 
from 10 participants at the Department of 
Anesthesiology of the University of Michigan, Ann 
Arbor, MI, USA. EEG signals were collected using a 64-
channel biosignal amplifier at a 500 Hz sampling rate. 
Sevoflurane concentration was gradually increased 
until loss of consciousness was reached. After at least 
10 min of unconsciousness, the reverse protocol was 
employed until the participant regained consciousness 
(cf. Thiery et al. 2018 for details). After artefact 
identification and rejection, data from 7 participants (4 
males, 20-23 yrs old) were kept for further analyses.  

Feature extraction: multifractal parameters 

We used the p-leaders multifractal formalism (Jaffard et 
al. 2015) to compute 12 multifractal features (log-
cumulnants c(p) 1 ,c(p) 2 ,c(p) 3 for p = 1→4) for each 
participant, and each epoch of the EEG data, in both 
the sleep and anesthesia data sets. These parameters 
characterize the singularities present in the signal. The 

p-leader formalism (Jaffard et al, 2015) is thought to 
outperform multifractal detrended fluctuation analysis 
(MFDFA) and wavelet leader formalisms (Wendt, 
2008).  Gathering results  for  different  values  of  p,  
enables  us  to  be  aware  of  the  disparate  types of 
singularities that are present in EEG signals For the 
transfer learning task considered here we chose to set 
p=4 and to limit the multifractal spectrum to its truncated 
2nd order polynomial expansion with only two scaling 
parameters, i.e. c1 (self-similarity, comparable to Hurst 
exponent) and c2 which corresponds to local 
fluctuations of scaling behaviors (c2 <0 indicates 
multifractality, while c2=0 indicate monofractality). 

Transfer learning method 

To explore transfer learning between the source 
domain (wakefulness/sleep) and the target domain 
(consciousness/unconsciousness), we explored 3 
options: (i) naïve transfer (no domain adaptation), (ii) 
supervised domain adaptation and (iii) unsupervised 
domain adaptation.  As we have 5 different sleep 
stages, we can train a classifier on all 10 possible binary 
sleep stage classification  problems (e.g. awake vs S2 
sleep), and then applied or adapted it to the 2-class 
(conscious vs unconscious) anesthesia dataset. But, 
first of all, we determined a geometrical mapping 
between the 63 electrodes of the anesthesia dataset, 
and the 19 electrodes of the sleep dataset using 
(closest electrodes in terms of spatial geometry).  

Naive Transfer Our simplest attempt at training a 
classifier on sleep stage discrimination to then apply it 
to consciousness vs unconsciousness classification 
was performed without any domain adaptation. For this 
approach which we refer to as naïve transfer (or 
“without domain adaptation”) we tested SVM (Support 
Vector Machine) with RBF kernel, Random Forest, and 
single hidden layer Neural Network. 

Domain Adaptation Learning a discriminative 
classifier or other predictor in the presence of a shift 
between training and test distributions is known as 
Domain Adaptation. Here we implemented an approach 
proposed by Ganin et al., (2017), known as Domain-
Adversarial Neural Network (DANN). The DANN 
framework elegantly addresses the domain adaptation 
problem by promoting the emergence of features that 
are discriminative for the main learning task on the 
source domain while being indiscriminate with respect 
to the shift between the domains. Such adaptation 
behaviour can be achieved using augmented neural 
network architectures that include a gradient reversal 
layer (Ganin et al. 2016). In principle, an adversarial DA 
trains two neural networks, a discriminator that attempts 
to separate the target domain from the transformed 
source domain, and a generator that aims to fool the 
discriminator to make the source and target domains 
look like one another as much as possible, similar to the 
philosophy of a conditional GAN (Goodfellow et al., 
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2014). 

The goal is both to optimize a ”label predictor” that 
learns to predict class label, and to optimize a ”domain 
classifier” that learn to discriminate the source domain 
from the target domain. Hence each part of the neural 
network (”label predictor” and ”domain classifier”) is 
competing against each other in the optimization of the 
min and max equation. To tackle this problem, a 
stochastic gradient procedure, in which updates are 
made in the opposite direction of the gradient for the 
minimizing parameters, and in the direction of the 
gradient for the maximizing parameters, is implemented 
by selecting a random subset of data at each step. 

Supervised DANN In the supervised DANN approach 
we optimized the hyper-parameters (coefficient of 
adaptation and size of the hidden layer). This was 
achieved using nested cross-validation approach where 
a ”Leave P Group(s) Out” (repeated 10 times, with 1 
participant out at each iteration) was followed by two 
”Leave P Group(s) Out” with 2 participants out for the 
anesthesia data and 7 participants out for the sleep 
data. For each electrode, the selected classifier was the 
one that gave the best decoding accuracy on the 
anesthesia data (the 2 participants left out) after domain 
adaptation.  

Unsupervised DANN  Although the nested cross-
validation described above was used to rule out bias, 
we do introduce a priori information by selecting the set 
of hyperparameters that give the best decoding 
accuracy on the transfer. We therefore also 
implemented a fully unsupervised DANN where all 
hyperparameters were set to their default value and (for 
10 times) 2 anesthesia participants and 7 sleep 
participants were left out to implement both a classifier 
(fit on sleep pair) without (naïve transfer) and with 
domain adaptation on the anesthesia dataset. 

 

Results 

Semi-supervised vs Naive transfer 

The SVM and Random Forest algorithms led to 
decoding accuracies of 86,89% and 88,59% 
respectively when classifying pairs of sleep stages. 
When we subsequently applied these trained models to 
the anesthesia data (i.e. naïve transfer from sleep 
classification to consciousness versus 
unconsciousness), the decoding accuracies obtained 
were close to the 50% chance-level. These results are 
expected since the training (sleep data) and test 
(anesthesia data) sets come from similar but different 
distributions. However, as shown in Figure 1, domain 
adaptation using DANN achieves a compromise where 
the accuracy on the source domain (sleep stages) is 
reduced while the decoding accuracy on the target 

domain (anesthesia data) is enhanced.  

 

Figure 1: Left panel – Neural Network classification accuracy on 
source domain (sleep) with (orange) and without (blue) domain 
adaptation when using various sleep stage pairs for training. Right 
panel – same but for results of NN on target domain (conscious vs 
unconscious). 

Our results indicate that the classification were now 
significant on almost all datasets (source and target). It 
is noteworthy, however, that the decoding accuracy on 
the source domain stays above 70% only for 
”Awake/SWS”, ”Rem/SWS” and ”Awake/S2” datasets. 
We can tentatively state that this may point towards a 
similarity between changes of EEG fractality compring 
shifts between sleep states and shifts between 
consciousness and unconsciousness, particularly for 
”Awake and SWS” stages, ”REM and SWS”, and 
”Awake and S2” stages. 

Obviously an algorithm that over-adapts to the target 
classification problem (consciousness vs 
unconsciousness) to the extent that it fails to reach 
relevant levels of decoding on the source domain 
(sleep) is of little value for our research question.  To 
highlight which sleep stage pairs led to a significant 
decoding accuracy on the anesthesia dataset, while 
maintaining a good decoding accuracy on the sleep set, 
we computed for each of the 10 pairs the product of the 
two (in source and target domain) mean decoding 
accuracies. The results (akin to a joint distribution) are 
shown in Figure 2. 

 

Figure 2: Product of decoding accuracies for source and target 
domains using neural networks, with and without domain adaptation. 

 

Unsupervised vs Naive transfer 

As expected in Figure 3, the decoding accuracy on the 
source dataset (sleep data) is not different from the one 
obtained with a semi-supervised method (Figure 1). 
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Nevertheless, the results on the target dataset 
(anesthesia data) have substantially decrease for each 
sleep pair possible. 

 

Figure 3 Left panel – Neural Network classification accuracy on 
source domain (sleep) with and without domain adaptation. Right 
panel – same but for results of NN on target domain (conscious vs 
unconscious). By contrast to Fig 1, here domain adaptation was 
without hyper-parameter optimization (i.e. unsupervised DANN) 

 

Conclusion and future work 

Our last findings put to the fore the existence of a link 
(in terms of multifractality) between the conscious-
unconscious shift and the shift between distinct sleep 
stages. Interestingly, the best domain adaptation 
results were made possible by adapting an “awake vs 
deep sleep (SWS)” classifier (Figures 1 and 2). The 
other prominent source domain models that showed 
high adaptability to anesthesia classification were 
”Awake vs S2” and ”REM vs SWS”. These findings are 
consistent with the fact that ”SWS” represents a deeper 
sleep state (Susmakova, 2004) and that ”REM” sleep 
stage has several brain dynamic properties that ar 
similar to the Awake state.  

More generally, the combination of representation 
learning and domain adaptation has a wide range of 
promising applications in many fields especially where 
the availability of labeled data and sample sizes are 
limiting factors. Here we illustrate how assessing the 
feasibility of domain adaptation (i.e. performance and 
what features of the data are particularly useful for it) 
can be useful to address questions in neuroscience that 
seek to uncover relationships between the neural 
substrates of various cognitive states. Ongoing work 
involves identifying the brain regions that showing the 
strongest discrepancies and strongest similarities 
between sleep and anesthesia. Moreover the validity 
and generalization of the findings reported here would 
benefit from incorporating anesthesia data sets with 
other anesthetics (e.g. Proofol) and with other 

anesthesia protocols (e.g. deep sedation).   
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